|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.nn import Conv2d, Module, ReLU |
|
from torch.nn.modules.utils import _pair |
|
|
|
__all__ = ['SplAtConv2d', 'DropBlock2D'] |
|
|
|
|
|
class DropBlock2D(object): |
|
def __init__(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
class SplAtConv2d(Module): |
|
"""Split-Attention Conv2d |
|
""" |
|
def __init__(self, |
|
in_channels, |
|
channels, |
|
kernel_size, |
|
stride=(1, 1), |
|
padding=(0, 0), |
|
dilation=(1, 1), |
|
groups=1, |
|
bias=True, |
|
radix=2, |
|
reduction_factor=4, |
|
rectify=False, |
|
rectify_avg=False, |
|
norm_layer=None, |
|
dropblock_prob=0.0, |
|
**kwargs): |
|
super(SplAtConv2d, self).__init__() |
|
padding = _pair(padding) |
|
self.rectify = rectify and (padding[0] > 0 or padding[1] > 0) |
|
self.rectify_avg = rectify_avg |
|
inter_channels = max(in_channels * radix // reduction_factor, 32) |
|
self.radix = radix |
|
self.cardinality = groups |
|
self.channels = channels |
|
self.dropblock_prob = dropblock_prob |
|
if self.rectify: |
|
from rfconv import RFConv2d |
|
self.conv = RFConv2d(in_channels, |
|
channels * radix, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups=groups * radix, |
|
bias=bias, |
|
average_mode=rectify_avg, |
|
**kwargs) |
|
else: |
|
self.conv = Conv2d(in_channels, |
|
channels * radix, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups=groups * radix, |
|
bias=bias, |
|
**kwargs) |
|
self.use_bn = norm_layer is not None |
|
if self.use_bn: |
|
self.bn0 = norm_layer(channels * radix) |
|
self.relu = ReLU(inplace=True) |
|
self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality) |
|
if self.use_bn: |
|
self.bn1 = norm_layer(inter_channels) |
|
self.fc2 = Conv2d(inter_channels, |
|
channels * radix, |
|
1, |
|
groups=self.cardinality) |
|
if dropblock_prob > 0.0: |
|
self.dropblock = DropBlock2D(dropblock_prob, 3) |
|
self.rsoftmax = rSoftMax(radix, groups) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
if self.use_bn: |
|
x = self.bn0(x) |
|
if self.dropblock_prob > 0.0: |
|
x = self.dropblock(x) |
|
x = self.relu(x) |
|
|
|
batch, rchannel = x.shape[:2] |
|
if self.radix > 1: |
|
if torch.__version__ < '1.5': |
|
splited = torch.split(x, int(rchannel // self.radix), dim=1) |
|
else: |
|
splited = torch.split(x, rchannel // self.radix, dim=1) |
|
gap = sum(splited) |
|
else: |
|
gap = x |
|
gap = F.adaptive_avg_pool2d(gap, 1) |
|
gap = self.fc1(gap) |
|
|
|
if self.use_bn: |
|
gap = self.bn1(gap) |
|
gap = self.relu(gap) |
|
|
|
atten = self.fc2(gap) |
|
atten = self.rsoftmax(atten).view(batch, -1, 1, 1) |
|
|
|
if self.radix > 1: |
|
if torch.__version__ < '1.5': |
|
attens = torch.split(atten, int(rchannel // self.radix), dim=1) |
|
else: |
|
attens = torch.split(atten, rchannel // self.radix, dim=1) |
|
out = sum([att * split for (att, split) in zip(attens, splited)]) |
|
else: |
|
out = atten * x |
|
return out.contiguous() |
|
|
|
|
|
class rSoftMax(nn.Module): |
|
def __init__(self, radix, cardinality): |
|
super().__init__() |
|
self.radix = radix |
|
self.cardinality = cardinality |
|
|
|
def forward(self, x): |
|
batch = x.size(0) |
|
if self.radix > 1: |
|
x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) |
|
x = F.softmax(x, dim=1) |
|
x = x.reshape(batch, -1) |
|
else: |
|
x = torch.sigmoid(x) |
|
return x |
|
|