|
import math |
|
import torch.nn as nn |
|
|
|
from .splat import SplAtConv2d, DropBlock2D |
|
from utils.learning import freeze_params |
|
|
|
__all__ = ['ResNet', 'Bottleneck'] |
|
|
|
_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' |
|
|
|
_model_sha256 = {name: checksum for checksum, name in []} |
|
|
|
|
|
def short_hash(name): |
|
if name not in _model_sha256: |
|
raise ValueError( |
|
'Pretrained model for {name} is not available.'.format(name=name)) |
|
return _model_sha256[name][:8] |
|
|
|
|
|
resnest_model_urls = { |
|
name: _url_format.format(name, short_hash(name)) |
|
for name in _model_sha256.keys() |
|
} |
|
|
|
|
|
class GlobalAvgPool2d(nn.Module): |
|
def __init__(self): |
|
"""Global average pooling over the input's spatial dimensions""" |
|
super(GlobalAvgPool2d, self).__init__() |
|
|
|
def forward(self, inputs): |
|
return nn.functional.adaptive_avg_pool2d(inputs, |
|
1).view(inputs.size(0), -1) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
"""ResNet Bottleneck |
|
""" |
|
|
|
expansion = 4 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
radix=1, |
|
cardinality=1, |
|
bottleneck_width=64, |
|
avd=False, |
|
avd_first=False, |
|
dilation=1, |
|
is_first=False, |
|
rectified_conv=False, |
|
rectify_avg=False, |
|
norm_layer=None, |
|
dropblock_prob=0.0, |
|
last_gamma=False): |
|
super(Bottleneck, self).__init__() |
|
group_width = int(planes * (bottleneck_width / 64.)) * cardinality |
|
self.conv1 = nn.Conv2d(inplanes, |
|
group_width, |
|
kernel_size=1, |
|
bias=False) |
|
self.bn1 = norm_layer(group_width) |
|
self.dropblock_prob = dropblock_prob |
|
self.radix = radix |
|
self.avd = avd and (stride > 1 or is_first) |
|
self.avd_first = avd_first |
|
|
|
if self.avd: |
|
self.avd_layer = nn.AvgPool2d(3, stride, padding=1) |
|
stride = 1 |
|
|
|
if dropblock_prob > 0.0: |
|
self.dropblock1 = DropBlock2D(dropblock_prob, 3) |
|
if radix == 1: |
|
self.dropblock2 = DropBlock2D(dropblock_prob, 3) |
|
self.dropblock3 = DropBlock2D(dropblock_prob, 3) |
|
|
|
if radix >= 1: |
|
self.conv2 = SplAtConv2d(group_width, |
|
group_width, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
groups=cardinality, |
|
bias=False, |
|
radix=radix, |
|
rectify=rectified_conv, |
|
rectify_avg=rectify_avg, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
elif rectified_conv: |
|
from rfconv import RFConv2d |
|
self.conv2 = RFConv2d(group_width, |
|
group_width, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
groups=cardinality, |
|
bias=False, |
|
average_mode=rectify_avg) |
|
self.bn2 = norm_layer(group_width) |
|
else: |
|
self.conv2 = nn.Conv2d(group_width, |
|
group_width, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
groups=cardinality, |
|
bias=False) |
|
self.bn2 = norm_layer(group_width) |
|
|
|
self.conv3 = nn.Conv2d(group_width, |
|
planes * 4, |
|
kernel_size=1, |
|
bias=False) |
|
self.bn3 = norm_layer(planes * 4) |
|
|
|
if last_gamma: |
|
from torch.nn.init import zeros_ |
|
zeros_(self.bn3.weight) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.dilation = dilation |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
if self.dropblock_prob > 0.0: |
|
out = self.dropblock1(out) |
|
out = self.relu(out) |
|
|
|
if self.avd and self.avd_first: |
|
out = self.avd_layer(out) |
|
|
|
out = self.conv2(out) |
|
if self.radix == 0: |
|
out = self.bn2(out) |
|
if self.dropblock_prob > 0.0: |
|
out = self.dropblock2(out) |
|
out = self.relu(out) |
|
|
|
if self.avd and not self.avd_first: |
|
out = self.avd_layer(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
if self.dropblock_prob > 0.0: |
|
out = self.dropblock3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
"""ResNet Variants |
|
Parameters |
|
---------- |
|
block : Block |
|
Class for the residual block. Options are BasicBlockV1, BottleneckV1. |
|
layers : list of int |
|
Numbers of layers in each block |
|
classes : int, default 1000 |
|
Number of classification classes. |
|
dilated : bool, default False |
|
Applying dilation strategy to pretrained ResNet yielding a stride-8 model, |
|
typically used in Semantic Segmentation. |
|
norm_layer : object |
|
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; |
|
for Synchronized Cross-GPU BachNormalization). |
|
Reference: |
|
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. |
|
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." |
|
""" |
|
|
|
|
|
def __init__(self, |
|
block, |
|
layers, |
|
radix=1, |
|
groups=1, |
|
bottleneck_width=64, |
|
num_classes=1000, |
|
dilated=False, |
|
dilation=1, |
|
deep_stem=False, |
|
stem_width=64, |
|
avg_down=False, |
|
rectified_conv=False, |
|
rectify_avg=False, |
|
avd=False, |
|
avd_first=False, |
|
final_drop=0.0, |
|
dropblock_prob=0, |
|
last_gamma=False, |
|
norm_layer=nn.BatchNorm2d, |
|
freeze_at=0): |
|
self.cardinality = groups |
|
self.bottleneck_width = bottleneck_width |
|
|
|
self.inplanes = stem_width * 2 if deep_stem else 64 |
|
self.avg_down = avg_down |
|
self.last_gamma = last_gamma |
|
|
|
self.radix = radix |
|
self.avd = avd |
|
self.avd_first = avd_first |
|
|
|
super(ResNet, self).__init__() |
|
self.rectified_conv = rectified_conv |
|
self.rectify_avg = rectify_avg |
|
if rectified_conv: |
|
from rfconv import RFConv2d |
|
conv_layer = RFConv2d |
|
else: |
|
conv_layer = nn.Conv2d |
|
conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} |
|
if deep_stem: |
|
self.conv1 = nn.Sequential( |
|
conv_layer(3, |
|
stem_width, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False, |
|
**conv_kwargs), |
|
norm_layer(stem_width), |
|
nn.ReLU(inplace=True), |
|
conv_layer(stem_width, |
|
stem_width, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
**conv_kwargs), |
|
norm_layer(stem_width), |
|
nn.ReLU(inplace=True), |
|
conv_layer(stem_width, |
|
stem_width * 2, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
**conv_kwargs), |
|
) |
|
else: |
|
self.conv1 = conv_layer(3, |
|
64, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3, |
|
bias=False, |
|
**conv_kwargs) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, |
|
64, |
|
layers[0], |
|
norm_layer=norm_layer, |
|
is_first=False) |
|
self.layer2 = self._make_layer(block, |
|
128, |
|
layers[1], |
|
stride=2, |
|
norm_layer=norm_layer) |
|
if dilated or dilation == 4: |
|
self.layer3 = self._make_layer(block, |
|
256, |
|
layers[2], |
|
stride=1, |
|
dilation=2, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
elif dilation == 2: |
|
self.layer3 = self._make_layer(block, |
|
256, |
|
layers[2], |
|
stride=2, |
|
dilation=1, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
else: |
|
self.layer3 = self._make_layer(block, |
|
256, |
|
layers[2], |
|
stride=2, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
|
|
self.stem = [self.conv1, self.bn1] |
|
self.stages = [self.layer1, self.layer2, self.layer3] |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, norm_layer): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
self.freeze(freeze_at) |
|
|
|
def _make_layer(self, |
|
block, |
|
planes, |
|
blocks, |
|
stride=1, |
|
dilation=1, |
|
norm_layer=None, |
|
dropblock_prob=0.0, |
|
is_first=True): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
down_layers = [] |
|
if self.avg_down: |
|
if dilation == 1: |
|
down_layers.append( |
|
nn.AvgPool2d(kernel_size=stride, |
|
stride=stride, |
|
ceil_mode=True, |
|
count_include_pad=False)) |
|
else: |
|
down_layers.append( |
|
nn.AvgPool2d(kernel_size=1, |
|
stride=1, |
|
ceil_mode=True, |
|
count_include_pad=False)) |
|
down_layers.append( |
|
nn.Conv2d(self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=1, |
|
bias=False)) |
|
else: |
|
down_layers.append( |
|
nn.Conv2d(self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False)) |
|
down_layers.append(norm_layer(planes * block.expansion)) |
|
downsample = nn.Sequential(*down_layers) |
|
|
|
layers = [] |
|
if dilation == 1 or dilation == 2: |
|
layers.append( |
|
block(self.inplanes, |
|
planes, |
|
stride, |
|
downsample=downsample, |
|
radix=self.radix, |
|
cardinality=self.cardinality, |
|
bottleneck_width=self.bottleneck_width, |
|
avd=self.avd, |
|
avd_first=self.avd_first, |
|
dilation=1, |
|
is_first=is_first, |
|
rectified_conv=self.rectified_conv, |
|
rectify_avg=self.rectify_avg, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob, |
|
last_gamma=self.last_gamma)) |
|
elif dilation == 4: |
|
layers.append( |
|
block(self.inplanes, |
|
planes, |
|
stride, |
|
downsample=downsample, |
|
radix=self.radix, |
|
cardinality=self.cardinality, |
|
bottleneck_width=self.bottleneck_width, |
|
avd=self.avd, |
|
avd_first=self.avd_first, |
|
dilation=2, |
|
is_first=is_first, |
|
rectified_conv=self.rectified_conv, |
|
rectify_avg=self.rectify_avg, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob, |
|
last_gamma=self.last_gamma)) |
|
else: |
|
raise RuntimeError("=> unknown dilation size: {}".format(dilation)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append( |
|
block(self.inplanes, |
|
planes, |
|
radix=self.radix, |
|
cardinality=self.cardinality, |
|
bottleneck_width=self.bottleneck_width, |
|
avd=self.avd, |
|
avd_first=self.avd_first, |
|
dilation=dilation, |
|
rectified_conv=self.rectified_conv, |
|
rectify_avg=self.rectify_avg, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob, |
|
last_gamma=self.last_gamma)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
xs = [] |
|
|
|
x = self.layer1(x) |
|
xs.append(x) |
|
x = self.layer2(x) |
|
xs.append(x) |
|
x = self.layer3(x) |
|
xs.append(x) |
|
|
|
xs.append(x) |
|
|
|
return xs |
|
|
|
def freeze(self, freeze_at): |
|
if freeze_at >= 1: |
|
for m in self.stem: |
|
freeze_params(m) |
|
|
|
for idx, stage in enumerate(self.stages, start=2): |
|
if freeze_at >= idx: |
|
freeze_params(stage) |
|
|