samtrack / aot /utils /ema.py
aikenml's picture
Upload folder using huggingface_hub
c985ba4
raw
history blame
3.56 kB
from __future__ import division
from __future__ import unicode_literals
import torch
def get_param_buffer_for_ema(model,
update_buffer=False,
required_buffers=['running_mean', 'running_var']):
params = model.parameters()
all_param_buffer = [p for p in params if p.requires_grad]
if update_buffer:
named_buffers = model.named_buffers()
for key, value in named_buffers:
for buffer_name in required_buffers:
if buffer_name in key:
all_param_buffer.append(value)
break
return all_param_buffer
class ExponentialMovingAverage:
"""
Maintains (exponential) moving average of a set of parameters.
"""
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach() for p in parameters]
self.collected_params = []
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay,
(1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copy current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
del (self.collected_params)