|
""" |
|
Creates a MobileNetV3 Model as defined in: |
|
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019). |
|
Searching for MobileNetV3 |
|
arXiv preprint arXiv:1905.02244. |
|
""" |
|
|
|
import torch.nn as nn |
|
import math |
|
from utils.learning import freeze_params |
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
""" |
|
This function is taken from the original tf repo. |
|
It ensures that all layers have a channel number that is divisible by 8 |
|
It can be seen here: |
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py |
|
:param v: |
|
:param divisor: |
|
:param min_value: |
|
:return: |
|
""" |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
class h_sigmoid(nn.Module): |
|
def __init__(self, inplace=True): |
|
super(h_sigmoid, self).__init__() |
|
self.relu = nn.ReLU6(inplace=inplace) |
|
|
|
def forward(self, x): |
|
return self.relu(x + 3) / 6 |
|
|
|
|
|
class h_swish(nn.Module): |
|
def __init__(self, inplace=True): |
|
super(h_swish, self).__init__() |
|
self.sigmoid = h_sigmoid(inplace=inplace) |
|
|
|
def forward(self, x): |
|
return x * self.sigmoid(x) |
|
|
|
|
|
class SELayer(nn.Module): |
|
def __init__(self, channel, reduction=4): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, _make_divisible(channel // reduction, 8)), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(_make_divisible(channel // reduction, 8), channel), |
|
h_sigmoid()) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y |
|
|
|
|
|
def conv_3x3_bn(inp, oup, stride, norm_layer=nn.BatchNorm2d): |
|
return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
|
norm_layer(oup), h_swish()) |
|
|
|
|
|
def conv_1x1_bn(inp, oup, norm_layer=nn.BatchNorm2d): |
|
return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False), |
|
norm_layer(oup), h_swish()) |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, |
|
inp, |
|
hidden_dim, |
|
oup, |
|
kernel_size, |
|
stride, |
|
use_se, |
|
use_hs, |
|
dilation=1, |
|
norm_layer=nn.BatchNorm2d): |
|
super(InvertedResidual, self).__init__() |
|
assert stride in [1, 2] |
|
|
|
self.identity = stride == 1 and inp == oup |
|
|
|
if inp == hidden_dim: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(hidden_dim, |
|
hidden_dim, |
|
kernel_size, |
|
stride, (kernel_size - 1) // 2 * dilation, |
|
dilation=dilation, |
|
groups=hidden_dim, |
|
bias=False), |
|
norm_layer(hidden_dim), |
|
h_swish() if use_hs else nn.ReLU(inplace=True), |
|
|
|
SELayer(hidden_dim) if use_se else nn.Identity(), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
norm_layer(oup), |
|
) |
|
else: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), |
|
norm_layer(hidden_dim), |
|
h_swish() if use_hs else nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, |
|
hidden_dim, |
|
kernel_size, |
|
stride, (kernel_size - 1) // 2 * dilation, |
|
dilation=dilation, |
|
groups=hidden_dim, |
|
bias=False), |
|
norm_layer(hidden_dim), |
|
|
|
SELayer(hidden_dim) if use_se else nn.Identity(), |
|
h_swish() if use_hs else nn.ReLU(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
norm_layer(oup), |
|
) |
|
|
|
def forward(self, x): |
|
if self.identity: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MobileNetV3Large(nn.Module): |
|
def __init__(self, |
|
output_stride=16, |
|
norm_layer=nn.BatchNorm2d, |
|
width_mult=1., |
|
freeze_at=0): |
|
super(MobileNetV3Large, self).__init__() |
|
""" |
|
Constructs a MobileNetV3-Large model |
|
""" |
|
cfgs = [ |
|
|
|
[3, 1, 16, 0, 0, 1], |
|
[3, 4, 24, 0, 0, 2], |
|
[3, 3, 24, 0, 0, 1], |
|
[5, 3, 40, 1, 0, 2], |
|
[5, 3, 40, 1, 0, 1], |
|
[5, 3, 40, 1, 0, 1], |
|
[3, 6, 80, 0, 1, 2], |
|
[3, 2.5, 80, 0, 1, 1], |
|
[3, 2.3, 80, 0, 1, 1], |
|
[3, 2.3, 80, 0, 1, 1], |
|
[3, 6, 112, 1, 1, 1], |
|
[3, 6, 112, 1, 1, 1], |
|
[5, 6, 160, 1, 1, 2], |
|
[5, 6, 160, 1, 1, 1], |
|
[5, 6, 160, 1, 1, 1] |
|
] |
|
self.cfgs = cfgs |
|
|
|
|
|
input_channel = _make_divisible(16 * width_mult, 8) |
|
layers = [conv_3x3_bn(3, input_channel, 2, norm_layer)] |
|
|
|
block = InvertedResidual |
|
now_stride = 2 |
|
rate = 1 |
|
for k, t, c, use_se, use_hs, s in self.cfgs: |
|
if now_stride == output_stride: |
|
dilation = rate |
|
rate *= s |
|
s = 1 |
|
else: |
|
dilation = 1 |
|
now_stride *= s |
|
output_channel = _make_divisible(c * width_mult, 8) |
|
exp_size = _make_divisible(input_channel * t, 8) |
|
layers.append( |
|
block(input_channel, exp_size, output_channel, k, s, use_se, |
|
use_hs, dilation, norm_layer)) |
|
input_channel = output_channel |
|
|
|
self.features = nn.Sequential(*layers) |
|
self.conv = conv_1x1_bn(input_channel, exp_size, norm_layer) |
|
|
|
|
|
self._initialize_weights() |
|
|
|
feature_4x = self.features[0:4] |
|
feautre_8x = self.features[4:7] |
|
feature_16x = self.features[7:13] |
|
feature_32x = self.features[13:] |
|
|
|
self.stages = [feature_4x, feautre_8x, feature_16x, feature_32x] |
|
|
|
self.freeze(freeze_at) |
|
|
|
def forward(self, x): |
|
xs = [] |
|
for stage in self.stages: |
|
x = stage(x) |
|
xs.append(x) |
|
xs[-1] = self.conv(xs[-1]) |
|
return xs |
|
|
|
def _initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
n = m.weight.size(1) |
|
m.weight.data.normal_(0, 0.01) |
|
m.bias.data.zero_() |
|
|
|
def freeze(self, freeze_at): |
|
if freeze_at >= 1: |
|
for m in self.stages[0][0]: |
|
freeze_params(m) |
|
|
|
for idx, stage in enumerate(self.stages, start=2): |
|
if freeze_at >= idx: |
|
freeze_params(stage) |
|
|