|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from networks.layers.basic import ConvGN |
|
|
|
|
|
class FPNSegmentationHead(nn.Module): |
|
def __init__(self, |
|
in_dim, |
|
out_dim, |
|
decode_intermediate_input=True, |
|
hidden_dim=256, |
|
shortcut_dims=[24, 32, 96, 1280], |
|
align_corners=True): |
|
super().__init__() |
|
self.align_corners = align_corners |
|
|
|
self.decode_intermediate_input = decode_intermediate_input |
|
|
|
self.conv_in = ConvGN(in_dim, hidden_dim, 1) |
|
|
|
self.conv_16x = ConvGN(hidden_dim, hidden_dim, 3) |
|
self.conv_8x = ConvGN(hidden_dim, hidden_dim // 2, 3) |
|
self.conv_4x = ConvGN(hidden_dim // 2, hidden_dim // 2, 3) |
|
|
|
self.adapter_16x = nn.Conv2d(shortcut_dims[-2], hidden_dim, 1) |
|
self.adapter_8x = nn.Conv2d(shortcut_dims[-3], hidden_dim, 1) |
|
self.adapter_4x = nn.Conv2d(shortcut_dims[-4], hidden_dim // 2, 1) |
|
|
|
self.conv_out = nn.Conv2d(hidden_dim // 2, out_dim, 1) |
|
|
|
self._init_weight() |
|
|
|
def forward(self, inputs, shortcuts): |
|
|
|
if self.decode_intermediate_input: |
|
x = torch.cat(inputs, dim=1) |
|
else: |
|
x = inputs[-1] |
|
|
|
x = F.relu_(self.conv_in(x)) |
|
x = F.relu_(self.conv_16x(self.adapter_16x(shortcuts[-2]) + x)) |
|
|
|
x = F.interpolate(x, |
|
size=shortcuts[-3].size()[-2:], |
|
mode="bilinear", |
|
align_corners=self.align_corners) |
|
x = F.relu_(self.conv_8x(self.adapter_8x(shortcuts[-3]) + x)) |
|
|
|
x = F.interpolate(x, |
|
size=shortcuts[-4].size()[-2:], |
|
mode="bilinear", |
|
align_corners=self.align_corners) |
|
x = F.relu_(self.conv_4x(self.adapter_4x(shortcuts[-4]) + x)) |
|
|
|
x = self.conv_out(x) |
|
|
|
return x |
|
|
|
def _init_weight(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|