|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
|
|
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry |
|
|
|
import argparse |
|
import json |
|
import os |
|
from typing import Any, Dict, List |
|
|
|
parser = argparse.ArgumentParser( |
|
description=( |
|
"Runs automatic mask generation on an input image or directory of images, " |
|
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, " |
|
"as well as pycocotools if saving in RLE format." |
|
) |
|
) |
|
|
|
parser.add_argument( |
|
"--input", |
|
type=str, |
|
required=True, |
|
help="Path to either a single input image or folder of images.", |
|
) |
|
|
|
parser.add_argument( |
|
"--output", |
|
type=str, |
|
required=True, |
|
help=( |
|
"Path to the directory where masks will be output. Output will be either a folder " |
|
"of PNGs per image or a single json with COCO-style masks." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--model-type", |
|
type=str, |
|
required=True, |
|
help="The type of model to load, in ['default', 'vit_h', 'vit_l', 'vit_b']", |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpoint", |
|
type=str, |
|
required=True, |
|
help="The path to the SAM checkpoint to use for mask generation.", |
|
) |
|
|
|
parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.") |
|
|
|
parser.add_argument( |
|
"--convert-to-rle", |
|
action="store_true", |
|
help=( |
|
"Save masks as COCO RLEs in a single json instead of as a folder of PNGs. " |
|
"Requires pycocotools." |
|
), |
|
) |
|
|
|
amg_settings = parser.add_argument_group("AMG Settings") |
|
|
|
amg_settings.add_argument( |
|
"--points-per-side", |
|
type=int, |
|
default=None, |
|
help="Generate masks by sampling a grid over the image with this many points to a side.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--points-per-batch", |
|
type=int, |
|
default=None, |
|
help="How many input points to process simultaneously in one batch.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--pred-iou-thresh", |
|
type=float, |
|
default=None, |
|
help="Exclude masks with a predicted score from the model that is lower than this threshold.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--stability-score-thresh", |
|
type=float, |
|
default=None, |
|
help="Exclude masks with a stability score lower than this threshold.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--stability-score-offset", |
|
type=float, |
|
default=None, |
|
help="Larger values perturb the mask more when measuring stability score.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--box-nms-thresh", |
|
type=float, |
|
default=None, |
|
help="The overlap threshold for excluding a duplicate mask.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--crop-n-layers", |
|
type=int, |
|
default=None, |
|
help=( |
|
"If >0, mask generation is run on smaller crops of the image to generate more masks. " |
|
"The value sets how many different scales to crop at." |
|
), |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--crop-nms-thresh", |
|
type=float, |
|
default=None, |
|
help="The overlap threshold for excluding duplicate masks across different crops.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--crop-overlap-ratio", |
|
type=int, |
|
default=None, |
|
help="Larger numbers mean image crops will overlap more.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--crop-n-points-downscale-factor", |
|
type=int, |
|
default=None, |
|
help="The number of points-per-side in each layer of crop is reduced by this factor.", |
|
) |
|
|
|
amg_settings.add_argument( |
|
"--min-mask-region-area", |
|
type=int, |
|
default=None, |
|
help=( |
|
"Disconnected mask regions or holes with area smaller than this value " |
|
"in pixels are removed by postprocessing." |
|
), |
|
) |
|
|
|
|
|
def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None: |
|
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" |
|
metadata = [header] |
|
for i, mask_data in enumerate(masks): |
|
mask = mask_data["segmentation"] |
|
filename = f"{i}.png" |
|
cv2.imwrite(os.path.join(path, filename), mask * 255) |
|
mask_metadata = [ |
|
str(i), |
|
str(mask_data["area"]), |
|
*[str(x) for x in mask_data["bbox"]], |
|
*[str(x) for x in mask_data["point_coords"][0]], |
|
str(mask_data["predicted_iou"]), |
|
str(mask_data["stability_score"]), |
|
*[str(x) for x in mask_data["crop_box"]], |
|
] |
|
row = ",".join(mask_metadata) |
|
metadata.append(row) |
|
metadata_path = os.path.join(path, "metadata.csv") |
|
with open(metadata_path, "w") as f: |
|
f.write("\n".join(metadata)) |
|
|
|
return |
|
|
|
|
|
def get_amg_kwargs(args): |
|
amg_kwargs = { |
|
"points_per_side": args.points_per_side, |
|
"points_per_batch": args.points_per_batch, |
|
"pred_iou_thresh": args.pred_iou_thresh, |
|
"stability_score_thresh": args.stability_score_thresh, |
|
"stability_score_offset": args.stability_score_offset, |
|
"box_nms_thresh": args.box_nms_thresh, |
|
"crop_n_layers": args.crop_n_layers, |
|
"crop_nms_thresh": args.crop_nms_thresh, |
|
"crop_overlap_ratio": args.crop_overlap_ratio, |
|
"crop_n_points_downscale_factor": args.crop_n_points_downscale_factor, |
|
"min_mask_region_area": args.min_mask_region_area, |
|
} |
|
amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None} |
|
return amg_kwargs |
|
|
|
|
|
def main(args: argparse.Namespace) -> None: |
|
print("Loading model...") |
|
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint) |
|
_ = sam.to(device=args.device) |
|
output_mode = "coco_rle" if args.convert_to_rle else "binary_mask" |
|
amg_kwargs = get_amg_kwargs(args) |
|
generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs) |
|
|
|
if not os.path.isdir(args.input): |
|
targets = [args.input] |
|
else: |
|
targets = [ |
|
f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f)) |
|
] |
|
targets = [os.path.join(args.input, f) for f in targets] |
|
|
|
os.makedirs(args.output, exist_ok=True) |
|
|
|
for t in targets: |
|
print(f"Processing '{t}'...") |
|
image = cv2.imread(t) |
|
if image is None: |
|
print(f"Could not load '{t}' as an image, skipping...") |
|
continue |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
masks = generator.generate(image) |
|
|
|
base = os.path.basename(t) |
|
base = os.path.splitext(base)[0] |
|
save_base = os.path.join(args.output, base) |
|
if output_mode == "binary_mask": |
|
os.makedirs(save_base, exist_ok=False) |
|
write_masks_to_folder(masks, save_base) |
|
else: |
|
save_file = save_base + ".json" |
|
with open(save_file, "w") as f: |
|
json.dump(masks, f) |
|
print("Done!") |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parser.parse_args() |
|
main(args) |
|
|