aikenml's picture
Upload folder using huggingface_hub
c985ba4
raw
history blame
29.7 kB
import os
import time
import json
import datetime as datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import DataLoader
from torchvision import transforms
from dataloaders.train_datasets import DAVIS2017_Train, YOUTUBEVOS_Train, StaticTrain, TEST
import dataloaders.video_transforms as tr
from utils.meters import AverageMeter
from utils.image import label2colormap, masked_image, save_image
from utils.checkpoint import load_network_and_optimizer, load_network, save_network
from utils.learning import adjust_learning_rate, get_trainable_params
from utils.metric import pytorch_iou
from utils.ema import ExponentialMovingAverage, get_param_buffer_for_ema
from networks.models import build_vos_model
from networks.engines import build_engine
class Trainer(object):
def __init__(self, rank, cfg, enable_amp=True):
self.gpu = rank + cfg.DIST_START_GPU
self.gpu_num = cfg.TRAIN_GPUS
self.rank = rank
self.cfg = cfg
self.print_log("Exp {}:".format(cfg.EXP_NAME))
self.print_log(json.dumps(cfg.__dict__, indent=4, sort_keys=True))
print("Use GPU {} for training VOS.".format(self.gpu))
torch.cuda.set_device(self.gpu)
torch.backends.cudnn.benchmark = True if cfg.DATA_RANDOMCROP[
0] == cfg.DATA_RANDOMCROP[
1] and 'swin' not in cfg.MODEL_ENCODER else False
self.print_log('Build VOS model.')
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(self.gpu)
self.model_encoder = self.model.encoder
self.engine = build_engine(
cfg.MODEL_ENGINE,
'train',
aot_model=self.model,
gpu_id=self.gpu,
long_term_mem_gap=cfg.TRAIN_LONG_TERM_MEM_GAP)
if cfg.MODEL_FREEZE_BACKBONE:
for param in self.model_encoder.parameters():
param.requires_grad = False
if cfg.DIST_ENABLE:
dist.init_process_group(backend=cfg.DIST_BACKEND,
init_method=cfg.DIST_URL,
world_size=cfg.TRAIN_GPUS,
rank=rank,
timeout=datetime.timedelta(seconds=300))
self.model.encoder = nn.SyncBatchNorm.convert_sync_batchnorm(
self.model.encoder).cuda(self.gpu)
self.dist_engine = torch.nn.parallel.DistributedDataParallel(
self.engine,
device_ids=[self.gpu],
output_device=self.gpu,
find_unused_parameters=True,
broadcast_buffers=False)
else:
self.dist_engine = self.engine
self.use_frozen_bn = False
if 'swin' in cfg.MODEL_ENCODER:
self.print_log('Use LN in Encoder!')
elif not cfg.MODEL_FREEZE_BN:
if cfg.DIST_ENABLE:
self.print_log('Use Sync BN in Encoder!')
else:
self.print_log('Use BN in Encoder!')
else:
self.use_frozen_bn = True
self.print_log('Use Frozen BN in Encoder!')
if self.rank == 0:
try:
total_steps = float(cfg.TRAIN_TOTAL_STEPS)
ema_decay = 1. - 1. / (total_steps * cfg.TRAIN_EMA_RATIO)
self.ema_params = get_param_buffer_for_ema(
self.model, update_buffer=(not cfg.MODEL_FREEZE_BN))
self.ema = ExponentialMovingAverage(self.ema_params,
decay=ema_decay)
self.ema_dir = cfg.DIR_EMA_CKPT
except Exception as inst:
self.print_log(inst)
self.print_log('Error: failed to create EMA model!')
self.print_log('Build optimizer.')
trainable_params = get_trainable_params(
model=self.dist_engine,
base_lr=cfg.TRAIN_LR,
use_frozen_bn=self.use_frozen_bn,
weight_decay=cfg.TRAIN_WEIGHT_DECAY,
exclusive_wd_dict=cfg.TRAIN_WEIGHT_DECAY_EXCLUSIVE,
no_wd_keys=cfg.TRAIN_WEIGHT_DECAY_EXEMPTION)
if cfg.TRAIN_OPT == 'sgd':
self.optimizer = optim.SGD(trainable_params,
lr=cfg.TRAIN_LR,
momentum=cfg.TRAIN_SGD_MOMENTUM,
nesterov=True)
else:
self.optimizer = optim.AdamW(trainable_params,
lr=cfg.TRAIN_LR,
weight_decay=cfg.TRAIN_WEIGHT_DECAY)
self.enable_amp = enable_amp
if enable_amp:
self.scaler = torch.cuda.amp.GradScaler()
else:
self.scaler = None
self.prepare_dataset()
self.process_pretrained_model()
if cfg.TRAIN_TBLOG and self.rank == 0:
from tensorboardX import SummaryWriter
self.tblogger = SummaryWriter(cfg.DIR_TB_LOG)
def process_pretrained_model(self):
cfg = self.cfg
self.step = cfg.TRAIN_START_STEP
self.epoch = 0
if cfg.TRAIN_AUTO_RESUME:
ckpts = os.listdir(cfg.DIR_CKPT)
if len(ckpts) > 0:
ckpts = list(
map(lambda x: int(x.split('_')[-1].split('.')[0]), ckpts))
ckpt = np.sort(ckpts)[-1]
cfg.TRAIN_RESUME = True
cfg.TRAIN_RESUME_CKPT = ckpt
cfg.TRAIN_RESUME_STEP = ckpt
else:
cfg.TRAIN_RESUME = False
if cfg.TRAIN_RESUME:
if self.rank == 0:
try:
try:
ema_ckpt_dir = os.path.join(
self.ema_dir,
'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
ema_model, removed_dict = load_network(
self.model, ema_ckpt_dir, self.gpu)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup EMA checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(
cfg.EXP_NAME, cfg.STAGE_NAME)
DIR_EMA_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt')
ema_ckpt_dir = os.path.join(
DIR_EMA_CKPT,
'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
ema_model, removed_dict = load_network(
self.model, ema_ckpt_dir, self.gpu)
if len(removed_dict) > 0:
self.print_log(
'Remove {} from EMA model.'.format(removed_dict))
ema_decay = self.ema.decay
del (self.ema)
ema_params = get_param_buffer_for_ema(
ema_model, update_buffer=(not cfg.MODEL_FREEZE_BN))
self.ema = ExponentialMovingAverage(ema_params,
decay=ema_decay)
self.ema.num_updates = cfg.TRAIN_RESUME_CKPT
except Exception as inst:
self.print_log(inst)
self.print_log('Error: EMA model not found!')
try:
resume_ckpt = os.path.join(
cfg.DIR_CKPT, 'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
self.model, self.optimizer, removed_dict = load_network_and_optimizer(
self.model,
self.optimizer,
resume_ckpt,
self.gpu,
scaler=self.scaler)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(cfg.EXP_NAME,
cfg.STAGE_NAME)
DIR_CKPT = os.path.join(DIR_RESULT, 'ckpt')
resume_ckpt = os.path.join(
DIR_CKPT, 'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
self.model, self.optimizer, removed_dict = load_network_and_optimizer(
self.model,
self.optimizer,
resume_ckpt,
self.gpu,
scaler=self.scaler)
if len(removed_dict) > 0:
self.print_log(
'Remove {} from checkpoint.'.format(removed_dict))
self.step = cfg.TRAIN_RESUME_STEP
if cfg.TRAIN_TOTAL_STEPS <= self.step:
self.print_log("Your training has finished!")
exit()
self.epoch = int(np.ceil(self.step / len(self.train_loader)))
self.print_log('Resume from step {}'.format(self.step))
elif cfg.PRETRAIN:
if cfg.PRETRAIN_FULL:
try:
self.model, removed_dict = load_network(
self.model, cfg.PRETRAIN_MODEL, self.gpu)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup EMA checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(
cfg.EXP_NAME, cfg.STAGE_NAME)
DIR_EMA_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt')
PRETRAIN_MODEL = os.path.join(
DIR_EMA_CKPT,
cfg.PRETRAIN_MODEL.split('/')[-1])
self.model, removed_dict = load_network(
self.model, PRETRAIN_MODEL, self.gpu)
if len(removed_dict) > 0:
self.print_log('Remove {} from pretrained model.'.format(
removed_dict))
self.print_log('Load pretrained VOS model from {}.'.format(
cfg.PRETRAIN_MODEL))
else:
model_encoder, removed_dict = load_network(
self.model_encoder, cfg.PRETRAIN_MODEL, self.gpu)
if len(removed_dict) > 0:
self.print_log('Remove {} from pretrained model.'.format(
removed_dict))
self.print_log(
'Load pretrained backbone model from {}.'.format(
cfg.PRETRAIN_MODEL))
def prepare_dataset(self):
cfg = self.cfg
self.enable_prev_frame = cfg.TRAIN_ENABLE_PREV_FRAME
self.print_log('Process dataset...')
if cfg.TRAIN_AUG_TYPE == 'v1':
composed_transforms = transforms.Compose([
tr.RandomScale(cfg.DATA_MIN_SCALE_FACTOR,
cfg.DATA_MAX_SCALE_FACTOR,
cfg.DATA_SHORT_EDGE_LEN),
tr.BalancedRandomCrop(cfg.DATA_RANDOMCROP,
max_obj_num=cfg.MODEL_MAX_OBJ_NUM),
tr.RandomHorizontalFlip(cfg.DATA_RANDOMFLIP),
tr.Resize(cfg.DATA_RANDOMCROP, use_padding=True),
tr.ToTensor()
])
elif cfg.TRAIN_AUG_TYPE == 'v2':
composed_transforms = transforms.Compose([
tr.RandomScale(cfg.DATA_MIN_SCALE_FACTOR,
cfg.DATA_MAX_SCALE_FACTOR,
cfg.DATA_SHORT_EDGE_LEN),
tr.BalancedRandomCrop(cfg.DATA_RANDOMCROP,
max_obj_num=cfg.MODEL_MAX_OBJ_NUM),
tr.RandomColorJitter(),
tr.RandomGrayScale(),
tr.RandomGaussianBlur(),
tr.RandomHorizontalFlip(cfg.DATA_RANDOMFLIP),
tr.Resize(cfg.DATA_RANDOMCROP, use_padding=True),
tr.ToTensor()
])
else:
assert NotImplementedError
train_datasets = []
if 'static' in cfg.DATASETS:
pretrain_vos_dataset = StaticTrain(
cfg.DIR_STATIC,
cfg.DATA_RANDOMCROP,
seq_len=cfg.DATA_SEQ_LEN,
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB,
max_obj_n=cfg.MODEL_MAX_OBJ_NUM,
aug_type=cfg.TRAIN_AUG_TYPE)
train_datasets.append(pretrain_vos_dataset)
self.enable_prev_frame = False
if 'davis2017' in cfg.DATASETS:
train_davis_dataset = DAVIS2017_Train(
root=cfg.DIR_DAVIS,
full_resolution=cfg.TRAIN_DATASET_FULL_RESOLUTION,
transform=composed_transforms,
repeat_time=cfg.DATA_DAVIS_REPEAT,
seq_len=cfg.DATA_SEQ_LEN,
rand_gap=cfg.DATA_RANDOM_GAP_DAVIS,
rand_reverse=cfg.DATA_RANDOM_REVERSE_SEQ,
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB,
enable_prev_frame=self.enable_prev_frame,
max_obj_n=cfg.MODEL_MAX_OBJ_NUM)
train_datasets.append(train_davis_dataset)
if 'youtubevos' in cfg.DATASETS:
train_ytb_dataset = YOUTUBEVOS_Train(
root=cfg.DIR_YTB,
transform=composed_transforms,
seq_len=cfg.DATA_SEQ_LEN,
rand_gap=cfg.DATA_RANDOM_GAP_YTB,
rand_reverse=cfg.DATA_RANDOM_REVERSE_SEQ,
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB,
enable_prev_frame=self.enable_prev_frame,
max_obj_n=cfg.MODEL_MAX_OBJ_NUM)
train_datasets.append(train_ytb_dataset)
if 'test' in cfg.DATASETS:
test_dataset = TEST(transform=composed_transforms,
seq_len=cfg.DATA_SEQ_LEN)
train_datasets.append(test_dataset)
if len(train_datasets) > 1:
train_dataset = torch.utils.data.ConcatDataset(train_datasets)
elif len(train_datasets) == 1:
train_dataset = train_datasets[0]
else:
self.print_log('No dataset!')
exit(0)
self.train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset) if self.cfg.DIST_ENABLE else None
self.train_loader = DataLoader(train_dataset,
batch_size=int(cfg.TRAIN_BATCH_SIZE /
cfg.TRAIN_GPUS),
shuffle=False if self.cfg.DIST_ENABLE else True,
num_workers=cfg.DATA_WORKERS,
pin_memory=True,
sampler=self.train_sampler,
drop_last=True,
prefetch_factor=4)
self.print_log('Done!')
def sequential_training(self):
cfg = self.cfg
if self.enable_prev_frame:
frame_names = ['Ref', 'Prev']
else:
frame_names = ['Ref(Prev)']
for i in range(cfg.DATA_SEQ_LEN - 1):
frame_names.append('Curr{}'.format(i + 1))
seq_len = len(frame_names)
running_losses = []
running_ious = []
for _ in range(seq_len):
running_losses.append(AverageMeter())
running_ious.append(AverageMeter())
batch_time = AverageMeter()
avg_obj = AverageMeter()
optimizer = self.optimizer
model = self.dist_engine
train_sampler = self.train_sampler
train_loader = self.train_loader
step = self.step
epoch = self.epoch
max_itr = cfg.TRAIN_TOTAL_STEPS
start_seq_training_step = int(cfg.TRAIN_SEQ_TRAINING_START_RATIO *
max_itr)
use_prev_prob = cfg.MODEL_USE_PREV_PROB
self.print_log('Start training:')
model.train()
while step < cfg.TRAIN_TOTAL_STEPS:
if self.cfg.DIST_ENABLE:
train_sampler.set_epoch(epoch)
epoch += 1
last_time = time.time()
for frame_idx, sample in enumerate(train_loader):
if step > cfg.TRAIN_TOTAL_STEPS:
break
if step % cfg.TRAIN_TBLOG_STEP == 0 and self.rank == 0 and cfg.TRAIN_TBLOG:
tf_board = True
else:
tf_board = False
if step >= start_seq_training_step:
use_prev_pred = True
freeze_params = cfg.TRAIN_SEQ_TRAINING_FREEZE_PARAMS
else:
use_prev_pred = False
freeze_params = []
if step % cfg.TRAIN_LR_UPDATE_STEP == 0:
now_lr = adjust_learning_rate(
optimizer=optimizer,
base_lr=cfg.TRAIN_LR,
p=cfg.TRAIN_LR_POWER,
itr=step,
max_itr=max_itr,
restart=cfg.TRAIN_LR_RESTART,
warm_up_steps=cfg.TRAIN_LR_WARM_UP_RATIO * max_itr,
is_cosine_decay=cfg.TRAIN_LR_COSINE_DECAY,
min_lr=cfg.TRAIN_LR_MIN,
encoder_lr_ratio=cfg.TRAIN_LR_ENCODER_RATIO,
freeze_params=freeze_params)
ref_imgs = sample['ref_img'] # batch_size * 3 * h * w
prev_imgs = sample['prev_img']
curr_imgs = sample['curr_img']
ref_labels = sample['ref_label'] # batch_size * 1 * h * w
prev_labels = sample['prev_label']
curr_labels = sample['curr_label']
obj_nums = sample['meta']['obj_num']
bs, _, h, w = curr_imgs[0].size()
ref_imgs = ref_imgs.cuda(self.gpu, non_blocking=True)
prev_imgs = prev_imgs.cuda(self.gpu, non_blocking=True)
curr_imgs = [
curr_img.cuda(self.gpu, non_blocking=True)
for curr_img in curr_imgs
]
ref_labels = ref_labels.cuda(self.gpu, non_blocking=True)
prev_labels = prev_labels.cuda(self.gpu, non_blocking=True)
curr_labels = [
curr_label.cuda(self.gpu, non_blocking=True)
for curr_label in curr_labels
]
obj_nums = list(obj_nums)
obj_nums = [int(obj_num) for obj_num in obj_nums]
batch_size = ref_imgs.size(0)
all_frames = torch.cat([ref_imgs, prev_imgs] + curr_imgs,
dim=0)
all_labels = torch.cat([ref_labels, prev_labels] + curr_labels,
dim=0)
self.engine.restart_engine(batch_size, True)
optimizer.zero_grad(set_to_none=True)
if self.enable_amp:
with torch.cuda.amp.autocast(enabled=True):
loss, all_pred, all_loss, boards = model(
all_frames,
all_labels,
batch_size,
use_prev_pred=use_prev_pred,
obj_nums=obj_nums,
step=step,
tf_board=tf_board,
enable_prev_frame=self.enable_prev_frame,
use_prev_prob=use_prev_prob)
loss = torch.mean(loss)
start = time.time()
self.scaler.scale(loss).backward()
end = time.time()
print(end-start)
self.scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(),
cfg.TRAIN_CLIP_GRAD_NORM)
self.scaler.step(optimizer)
self.scaler.update()
else:
loss, all_pred, all_loss, boards = model(
all_frames,
all_labels,
ref_imgs.size(0),
use_prev_pred=use_prev_pred,
obj_nums=obj_nums,
step=step,
tf_board=tf_board,
enable_prev_frame=self.enable_prev_frame,
use_prev_prob=use_prev_prob)
loss = torch.mean(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(),
cfg.TRAIN_CLIP_GRAD_NORM)
loss.backward()
optimizer.step()
for idx in range(seq_len):
now_pred = all_pred[idx].detach()
now_label = all_labels[idx * bs:(idx + 1) * bs].detach()
now_loss = torch.mean(all_loss[idx].detach())
now_iou = pytorch_iou(now_pred.unsqueeze(1), now_label,
obj_nums) * 100
if self.cfg.DIST_ENABLE:
dist.all_reduce(now_loss)
dist.all_reduce(now_iou)
now_loss /= self.gpu_num
now_iou /= self.gpu_num
if self.rank == 0:
running_losses[idx].update(now_loss.item())
running_ious[idx].update(now_iou.item())
if self.rank == 0:
self.ema.update(self.ema_params)
avg_obj.update(sum(obj_nums) / float(len(obj_nums)))
curr_time = time.time()
batch_time.update(curr_time - last_time)
last_time = curr_time
if step % cfg.TRAIN_TBLOG_STEP == 0:
all_f = [ref_imgs, prev_imgs] + curr_imgs
self.process_log(ref_imgs, all_f[-2], all_f[-1],
ref_labels, all_pred[-2], now_label,
now_pred, boards, running_losses,
running_ious, now_lr, step)
if step % cfg.TRAIN_LOG_STEP == 0:
strs = 'I:{}, LR:{:.5f}, T:{:.1f}({:.1f})s, Obj:{:.1f}({:.1f})'.format(
step, now_lr, batch_time.val,
batch_time.moving_avg, avg_obj.val,
avg_obj.moving_avg)
batch_time.reset()
avg_obj.reset()
for idx in range(seq_len):
strs += ', {}: L {:.3f}({:.3f}) IoU {:.1f}({:.1f})%'.format(
frame_names[idx], running_losses[idx].val,
running_losses[idx].moving_avg,
running_ious[idx].val,
running_ious[idx].moving_avg)
running_losses[idx].reset()
running_ious[idx].reset()
self.print_log(strs)
step += 1
if step % cfg.TRAIN_SAVE_STEP == 0 and self.rank == 0:
max_mem = torch.cuda.max_memory_allocated(
device=self.gpu) / (1024.**3)
ETA = str(
datetime.timedelta(
seconds=int(batch_time.moving_avg *
(cfg.TRAIN_TOTAL_STEPS - step))))
self.print_log('ETA: {}, Max Mem: {:.2f}G.'.format(
ETA, max_mem))
self.print_log('Save CKPT (Step {}).'.format(step))
save_network(self.model,
optimizer,
step,
cfg.DIR_CKPT,
cfg.TRAIN_MAX_KEEP_CKPT,
backup_dir='./backup/{}/{}/ckpt'.format(
cfg.EXP_NAME, cfg.STAGE_NAME),
scaler=self.scaler)
try:
torch.cuda.empty_cache()
# First save original parameters before replacing with EMA version
self.ema.store(self.ema_params)
# Copy EMA parameters to model
self.ema.copy_to(self.ema_params)
# Save EMA model
save_network(
self.model,
optimizer,
step,
self.ema_dir,
cfg.TRAIN_MAX_KEEP_CKPT,
backup_dir='./backup/{}/{}/ema_ckpt'.format(
cfg.EXP_NAME, cfg.STAGE_NAME),
scaler=self.scaler)
# Restore original parameters to resume training later
self.ema.restore(self.ema_params)
except Exception as inst:
self.print_log(inst)
self.print_log('Error: failed to save EMA model!')
self.print_log('Stop training!')
def print_log(self, string):
if self.rank == 0:
print(string)
def process_log(self, ref_imgs, prev_imgs, curr_imgs, ref_labels,
prev_labels, curr_labels, curr_pred, boards,
running_losses, running_ious, now_lr, step):
cfg = self.cfg
mean = np.array([[[0.485]], [[0.456]], [[0.406]]])
sigma = np.array([[[0.229]], [[0.224]], [[0.225]]])
show_ref_img, show_prev_img, show_curr_img = [
img.cpu().numpy()[0] * sigma + mean
for img in [ref_imgs, prev_imgs, curr_imgs]
]
show_gt, show_prev_gt, show_ref_gt, show_preds_s = [
label.cpu()[0].squeeze(0).numpy()
for label in [curr_labels, prev_labels, ref_labels, curr_pred]
]
show_gtf, show_prev_gtf, show_ref_gtf, show_preds_sf = [
label2colormap(label).transpose((2, 0, 1))
for label in [show_gt, show_prev_gt, show_ref_gt, show_preds_s]
]
if cfg.TRAIN_IMG_LOG or cfg.TRAIN_TBLOG:
show_ref_img = masked_image(show_ref_img, show_ref_gtf,
show_ref_gt)
if cfg.TRAIN_IMG_LOG:
save_image(
show_ref_img,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_ref_img.jpeg' % (step)))
show_prev_img = masked_image(show_prev_img, show_prev_gtf,
show_prev_gt)
if cfg.TRAIN_IMG_LOG:
save_image(
show_prev_img,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_prev_img.jpeg' % (step)))
show_img_pred = masked_image(show_curr_img, show_preds_sf,
show_preds_s)
if cfg.TRAIN_IMG_LOG:
save_image(
show_img_pred,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_prediction.jpeg' % (step)))
show_curr_img = masked_image(show_curr_img, show_gtf, show_gt)
if cfg.TRAIN_IMG_LOG:
save_image(
show_curr_img,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_groundtruth.jpeg' % (step)))
if cfg.TRAIN_TBLOG:
for seq_step, running_loss, running_iou in zip(
range(len(running_losses)), running_losses,
running_ious):
self.tblogger.add_scalar('S{}/Loss'.format(seq_step),
running_loss.avg, step)
self.tblogger.add_scalar('S{}/IoU'.format(seq_step),
running_iou.avg, step)
self.tblogger.add_scalar('LR', now_lr, step)
self.tblogger.add_image('Ref/Image', show_ref_img, step)
self.tblogger.add_image('Ref/GT', show_ref_gtf, step)
self.tblogger.add_image('Prev/Image', show_prev_img, step)
self.tblogger.add_image('Prev/GT', show_prev_gtf, step)
self.tblogger.add_image('Curr/Image_GT', show_curr_img, step)
self.tblogger.add_image('Curr/Image_Pred', show_img_pred, step)
self.tblogger.add_image('Curr/Mask_GT', show_gtf, step)
self.tblogger.add_image('Curr/Mask_Pred', show_preds_sf, step)
for key in boards['image'].keys():
tmp = boards['image'][key].cpu().numpy()
self.tblogger.add_image('S{}/' + key, tmp, step)
for key in boards['scalar'].keys():
tmp = boards['scalar'][key].cpu().numpy()
self.tblogger.add_scalar('S{}/' + key, tmp, step)
self.tblogger.flush()
del (boards)