aikenml's picture
Upload folder using huggingface_hub
c985ba4
raw
history blame
2.81 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.math import truncated_normal_
class Downsample2D(nn.Module):
def __init__(self, mode='nearest', scale=4):
super().__init__()
self.mode = mode
self.scale = scale
def forward(self, x):
n, c, h, w = x.size()
x = F.interpolate(x,
size=(h // self.scale + 1, w // self.scale + 1),
mode=self.mode)
return x
def generate_coord(x):
_, _, h, w = x.size()
device = x.device
col = torch.arange(0, h, device=device)
row = torch.arange(0, w, device=device)
grid_h, grid_w = torch.meshgrid(col, row)
return grid_h, grid_w
class PositionEmbeddingSine(nn.Module):
def __init__(self,
num_pos_feats=64,
temperature=10000,
normalize=False,
scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x):
grid_y, grid_x = generate_coord(x)
y_embed = grid_y.unsqueeze(0).float()
x_embed = grid_x.unsqueeze(0).float()
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats,
dtype=torch.float32,
device=x.device)
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class PositionEmbeddingLearned(nn.Module):
def __init__(self, num_pos_feats=64, H=30, W=30):
super().__init__()
self.H = H
self.W = W
self.pos_emb = nn.Parameter(
truncated_normal_(torch.zeros(1, num_pos_feats, H, W)))
def forward(self, x):
bs, _, h, w = x.size()
pos_emb = self.pos_emb
if h != self.H or w != self.W:
pos_emb = F.interpolate(pos_emb, size=(h, w), mode="bilinear")
return pos_emb