|
import torch.nn as nn |
|
|
|
from networks.layers.transformer import DualBranchGPM |
|
from networks.models.aot import AOT |
|
from networks.decoders import build_decoder |
|
|
|
|
|
class DeAOT(AOT): |
|
def __init__(self, cfg, encoder='mobilenetv2', decoder='fpn'): |
|
super().__init__(cfg, encoder, decoder) |
|
|
|
self.LSTT = DualBranchGPM( |
|
cfg.MODEL_LSTT_NUM, |
|
cfg.MODEL_ENCODER_EMBEDDING_DIM, |
|
cfg.MODEL_SELF_HEADS, |
|
cfg.MODEL_ATT_HEADS, |
|
emb_dropout=cfg.TRAIN_LSTT_EMB_DROPOUT, |
|
droppath=cfg.TRAIN_LSTT_DROPPATH, |
|
lt_dropout=cfg.TRAIN_LSTT_LT_DROPOUT, |
|
st_dropout=cfg.TRAIN_LSTT_ST_DROPOUT, |
|
droppath_lst=cfg.TRAIN_LSTT_DROPPATH_LST, |
|
droppath_scaling=cfg.TRAIN_LSTT_DROPPATH_SCALING, |
|
intermediate_norm=cfg.MODEL_DECODER_INTERMEDIATE_LSTT, |
|
return_intermediate=True) |
|
|
|
decoder_indim = cfg.MODEL_ENCODER_EMBEDDING_DIM * \ |
|
(cfg.MODEL_LSTT_NUM * 2 + |
|
1) if cfg.MODEL_DECODER_INTERMEDIATE_LSTT else cfg.MODEL_ENCODER_EMBEDDING_DIM * 2 |
|
|
|
self.decoder = build_decoder( |
|
decoder, |
|
in_dim=decoder_indim, |
|
out_dim=cfg.MODEL_MAX_OBJ_NUM + 1, |
|
decode_intermediate_input=cfg.MODEL_DECODER_INTERMEDIATE_LSTT, |
|
hidden_dim=cfg.MODEL_ENCODER_EMBEDDING_DIM, |
|
shortcut_dims=cfg.MODEL_ENCODER_DIM, |
|
align_corners=cfg.MODEL_ALIGN_CORNERS) |
|
|
|
self.id_norm = nn.LayerNorm(cfg.MODEL_ENCODER_EMBEDDING_DIM) |
|
|
|
self._init_weight() |
|
|
|
def decode_id_logits(self, lstt_emb, shortcuts): |
|
n, c, h, w = shortcuts[-1].size() |
|
decoder_inputs = [shortcuts[-1]] |
|
for emb in lstt_emb: |
|
decoder_inputs.append(emb.view(h, w, n, -1).permute(2, 3, 0, 1)) |
|
pred_logit = self.decoder(decoder_inputs, shortcuts) |
|
return pred_logit |
|
|
|
def get_id_emb(self, x): |
|
id_emb = self.patch_wise_id_bank(x) |
|
id_emb = self.id_norm(id_emb.permute(2, 3, 0, 1)).permute(2, 3, 0, 1) |
|
id_emb = self.id_dropout(id_emb) |
|
return id_emb |
|
|