|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from utils.math import truncated_normal_ |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
def __init__(self, mode='nearest', scale=4): |
|
super().__init__() |
|
self.mode = mode |
|
self.scale = scale |
|
|
|
def forward(self, x): |
|
n, c, h, w = x.size() |
|
x = F.interpolate(x, |
|
size=(h // self.scale + 1, w // self.scale + 1), |
|
mode=self.mode) |
|
return x |
|
|
|
|
|
def generate_coord(x): |
|
_, _, h, w = x.size() |
|
device = x.device |
|
col = torch.arange(0, h, device=device) |
|
row = torch.arange(0, w, device=device) |
|
grid_h, grid_w = torch.meshgrid(col, row) |
|
return grid_h, grid_w |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
def __init__(self, |
|
num_pos_feats=64, |
|
temperature=10000, |
|
normalize=False, |
|
scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, x): |
|
grid_y, grid_x = generate_coord(x) |
|
|
|
y_embed = grid_y.unsqueeze(0).float() |
|
x_embed = grid_x.unsqueeze(0).float() |
|
|
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, |
|
dtype=torch.float32, |
|
device=x.device) |
|
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
|
|
class PositionEmbeddingLearned(nn.Module): |
|
def __init__(self, num_pos_feats=64, H=30, W=30): |
|
super().__init__() |
|
self.H = H |
|
self.W = W |
|
self.pos_emb = nn.Parameter( |
|
truncated_normal_(torch.zeros(1, num_pos_feats, H, W))) |
|
|
|
def forward(self, x): |
|
bs, _, h, w = x.size() |
|
pos_emb = self.pos_emb |
|
if h != self.H or w != self.W: |
|
pos_emb = F.interpolate(pos_emb, size=(h, w), mode="bilinear") |
|
return pos_emb |
|
|