|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
class GroupNorm1D(nn.Module): |
|
def __init__(self, indim, groups=8): |
|
super().__init__() |
|
self.gn = nn.GroupNorm(groups, indim) |
|
|
|
def forward(self, x): |
|
return self.gn(x.permute(1, 2, 0)).permute(2, 0, 1) |
|
|
|
|
|
class GNActDWConv2d(nn.Module): |
|
def __init__(self, indim, gn_groups=32): |
|
super().__init__() |
|
self.gn = nn.GroupNorm(gn_groups, indim) |
|
self.conv = nn.Conv2d(indim, |
|
indim, |
|
5, |
|
dilation=1, |
|
padding=2, |
|
groups=indim, |
|
bias=False) |
|
|
|
def forward(self, x, size_2d): |
|
h, w = size_2d |
|
_, bs, c = x.size() |
|
x = x.view(h, w, bs, c).permute(2, 3, 0, 1) |
|
x = self.gn(x) |
|
x = F.gelu(x) |
|
x = self.conv(x) |
|
x = x.view(bs, c, h * w).permute(2, 0, 1) |
|
return x |
|
|
|
|
|
class DWConv2d(nn.Module): |
|
def __init__(self, indim, dropout=0.1): |
|
super().__init__() |
|
self.conv = nn.Conv2d(indim, |
|
indim, |
|
5, |
|
dilation=1, |
|
padding=2, |
|
groups=indim, |
|
bias=False) |
|
self.dropout = nn.Dropout2d(p=dropout, inplace=True) |
|
|
|
def forward(self, x, size_2d): |
|
h, w = size_2d |
|
_, bs, c = x.size() |
|
x = x.view(h, w, bs, c).permute(2, 3, 0, 1) |
|
x = self.conv(x) |
|
x = self.dropout(x) |
|
x = x.view(bs, c, h * w).permute(2, 0, 1) |
|
return x |
|
|
|
|
|
class ScaleOffset(nn.Module): |
|
def __init__(self, indim): |
|
super().__init__() |
|
self.gamma = nn.Parameter(torch.ones(indim)) |
|
|
|
self.beta = nn.Parameter(torch.zeros(indim)) |
|
|
|
def forward(self, x): |
|
if len(x.size()) == 3: |
|
return x * self.gamma + self.beta |
|
else: |
|
return x * self.gamma.view(1, -1, 1, 1) + self.beta.view( |
|
1, -1, 1, 1) |
|
|
|
|
|
class ConvGN(nn.Module): |
|
def __init__(self, indim, outdim, kernel_size, gn_groups=8): |
|
super().__init__() |
|
self.conv = nn.Conv2d(indim, |
|
outdim, |
|
kernel_size, |
|
padding=kernel_size // 2) |
|
self.gn = nn.GroupNorm(gn_groups, outdim) |
|
|
|
def forward(self, x): |
|
return self.gn(self.conv(x)) |
|
|
|
|
|
def seq_to_2d(tensor, size_2d): |
|
h, w = size_2d |
|
_, n, c = tensor.size() |
|
tensor = tensor.view(h, w, n, c).permute(2, 3, 0, 1).contiguous() |
|
return tensor |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = ( |
|
x.shape[0], |
|
x.shape[1], |
|
) + (1, ) * (x.ndim - 2 |
|
) |
|
random_tensor = keep_prob + torch.rand( |
|
shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
def mask_out(x, y, mask_rate=0.15, training=False): |
|
if mask_rate == 0. or not training: |
|
return x |
|
|
|
keep_prob = 1 - mask_rate |
|
shape = ( |
|
x.shape[0], |
|
x.shape[1], |
|
) + (1, ) * (x.ndim - 2 |
|
) |
|
random_tensor = keep_prob + torch.rand( |
|
shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x * random_tensor + y * (1 - random_tensor) |
|
|
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
def __init__(self, drop_prob=None, batch_dim=0): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.batch_dim = batch_dim |
|
|
|
def forward(self, x): |
|
return self.drop_path(x, self.drop_prob) |
|
|
|
def drop_path(self, x, drop_prob): |
|
if drop_prob == 0. or not self.training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = [1 for _ in range(x.ndim)] |
|
shape[self.batch_dim] = x.shape[self.batch_dim] |
|
random_tensor = keep_prob + torch.rand( |
|
shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropOutLogit(nn.Module): |
|
def __init__(self, drop_prob=None): |
|
super(DropOutLogit, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return self.drop_logit(x, self.drop_prob) |
|
|
|
def drop_logit(self, x, drop_prob): |
|
if drop_prob == 0. or not self.training: |
|
return x |
|
random_tensor = drop_prob + torch.rand( |
|
x.shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
mask = random_tensor * 1e+8 if ( |
|
x.dtype == torch.float32) else random_tensor * 1e+4 |
|
output = x - mask |
|
return output |
|
|