|
import argparse |
|
import json |
|
import warnings |
|
from collections import OrderedDict |
|
from copy import deepcopy |
|
from typing import Any, Dict, List |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer |
|
|
|
from groundingdino.util.slconfig import SLConfig |
|
|
|
|
|
def slprint(x, name="x"): |
|
if isinstance(x, (torch.Tensor, np.ndarray)): |
|
print(f"{name}.shape:", x.shape) |
|
elif isinstance(x, (tuple, list)): |
|
print("type x:", type(x)) |
|
for i in range(min(10, len(x))): |
|
slprint(x[i], f"{name}[{i}]") |
|
elif isinstance(x, dict): |
|
for k, v in x.items(): |
|
slprint(v, f"{name}[{k}]") |
|
else: |
|
print(f"{name}.type:", type(x)) |
|
|
|
|
|
def clean_state_dict(state_dict): |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
if k[:7] == "module.": |
|
k = k[7:] |
|
new_state_dict[k] = v |
|
return new_state_dict |
|
|
|
|
|
def renorm( |
|
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) -> torch.FloatTensor: |
|
|
|
|
|
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() |
|
if img.dim() == 3: |
|
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( |
|
img.size(0), |
|
str(img.size()), |
|
) |
|
img_perm = img.permute(1, 2, 0) |
|
mean = torch.Tensor(mean) |
|
std = torch.Tensor(std) |
|
img_res = img_perm * std + mean |
|
return img_res.permute(2, 0, 1) |
|
else: |
|
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( |
|
img.size(1), |
|
str(img.size()), |
|
) |
|
img_perm = img.permute(0, 2, 3, 1) |
|
mean = torch.Tensor(mean) |
|
std = torch.Tensor(std) |
|
img_res = img_perm * std + mean |
|
return img_res.permute(0, 3, 1, 2) |
|
|
|
|
|
class CocoClassMapper: |
|
def __init__(self) -> None: |
|
self.category_map_str = { |
|
"1": 1, |
|
"2": 2, |
|
"3": 3, |
|
"4": 4, |
|
"5": 5, |
|
"6": 6, |
|
"7": 7, |
|
"8": 8, |
|
"9": 9, |
|
"10": 10, |
|
"11": 11, |
|
"13": 12, |
|
"14": 13, |
|
"15": 14, |
|
"16": 15, |
|
"17": 16, |
|
"18": 17, |
|
"19": 18, |
|
"20": 19, |
|
"21": 20, |
|
"22": 21, |
|
"23": 22, |
|
"24": 23, |
|
"25": 24, |
|
"27": 25, |
|
"28": 26, |
|
"31": 27, |
|
"32": 28, |
|
"33": 29, |
|
"34": 30, |
|
"35": 31, |
|
"36": 32, |
|
"37": 33, |
|
"38": 34, |
|
"39": 35, |
|
"40": 36, |
|
"41": 37, |
|
"42": 38, |
|
"43": 39, |
|
"44": 40, |
|
"46": 41, |
|
"47": 42, |
|
"48": 43, |
|
"49": 44, |
|
"50": 45, |
|
"51": 46, |
|
"52": 47, |
|
"53": 48, |
|
"54": 49, |
|
"55": 50, |
|
"56": 51, |
|
"57": 52, |
|
"58": 53, |
|
"59": 54, |
|
"60": 55, |
|
"61": 56, |
|
"62": 57, |
|
"63": 58, |
|
"64": 59, |
|
"65": 60, |
|
"67": 61, |
|
"70": 62, |
|
"72": 63, |
|
"73": 64, |
|
"74": 65, |
|
"75": 66, |
|
"76": 67, |
|
"77": 68, |
|
"78": 69, |
|
"79": 70, |
|
"80": 71, |
|
"81": 72, |
|
"82": 73, |
|
"84": 74, |
|
"85": 75, |
|
"86": 76, |
|
"87": 77, |
|
"88": 78, |
|
"89": 79, |
|
"90": 80, |
|
} |
|
self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()} |
|
self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()} |
|
|
|
def origin2compact(self, idx): |
|
return self.origin2compact_mapper[int(idx)] |
|
|
|
def compact2origin(self, idx): |
|
return self.compact2origin_mapper[int(idx)] |
|
|
|
|
|
def to_device(item, device): |
|
if isinstance(item, torch.Tensor): |
|
return item.to(device) |
|
elif isinstance(item, list): |
|
return [to_device(i, device) for i in item] |
|
elif isinstance(item, dict): |
|
return {k: to_device(v, device) for k, v in item.items()} |
|
else: |
|
raise NotImplementedError( |
|
"Call Shilong if you use other containers! type: {}".format(type(item)) |
|
) |
|
|
|
|
|
|
|
def get_gaussian_mean(x, axis, other_axis, softmax=True): |
|
""" |
|
|
|
Args: |
|
x (float): Input images(BxCxHxW) |
|
axis (int): The index for weighted mean |
|
other_axis (int): The other index |
|
|
|
Returns: weighted index for axis, BxC |
|
|
|
""" |
|
mat2line = torch.sum(x, axis=other_axis) |
|
|
|
if softmax: |
|
u = torch.softmax(mat2line, axis=2) |
|
else: |
|
u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6) |
|
size = x.shape[axis] |
|
ind = torch.linspace(0, 1, size).to(x.device) |
|
batch = x.shape[0] |
|
channel = x.shape[1] |
|
index = ind.repeat([batch, channel, 1]) |
|
mean_position = torch.sum(index * u, dim=2) |
|
return mean_position |
|
|
|
|
|
def get_expected_points_from_map(hm, softmax=True): |
|
"""get_gaussian_map_from_points |
|
B,C,H,W -> B,N,2 float(0, 1) float(0, 1) |
|
softargmax function |
|
|
|
Args: |
|
hm (float): Input images(BxCxHxW) |
|
|
|
Returns: |
|
weighted index for axis, BxCx2. float between 0 and 1. |
|
|
|
""" |
|
|
|
B, C, H, W = hm.shape |
|
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) |
|
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) |
|
|
|
return torch.stack([x_mean, y_mean], dim=2) |
|
|
|
|
|
|
|
|
|
class Embedder: |
|
def __init__(self, **kwargs): |
|
self.kwargs = kwargs |
|
self.create_embedding_fn() |
|
|
|
def create_embedding_fn(self): |
|
embed_fns = [] |
|
d = self.kwargs["input_dims"] |
|
out_dim = 0 |
|
if self.kwargs["include_input"]: |
|
embed_fns.append(lambda x: x) |
|
out_dim += d |
|
|
|
max_freq = self.kwargs["max_freq_log2"] |
|
N_freqs = self.kwargs["num_freqs"] |
|
|
|
if self.kwargs["log_sampling"]: |
|
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs) |
|
else: |
|
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs) |
|
|
|
for freq in freq_bands: |
|
for p_fn in self.kwargs["periodic_fns"]: |
|
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)) |
|
out_dim += d |
|
|
|
self.embed_fns = embed_fns |
|
self.out_dim = out_dim |
|
|
|
def embed(self, inputs): |
|
return torch.cat([fn(inputs) for fn in self.embed_fns], -1) |
|
|
|
|
|
def get_embedder(multires, i=0): |
|
import torch.nn as nn |
|
|
|
if i == -1: |
|
return nn.Identity(), 3 |
|
|
|
embed_kwargs = { |
|
"include_input": True, |
|
"input_dims": 3, |
|
"max_freq_log2": multires - 1, |
|
"num_freqs": multires, |
|
"log_sampling": True, |
|
"periodic_fns": [torch.sin, torch.cos], |
|
} |
|
|
|
embedder_obj = Embedder(**embed_kwargs) |
|
embed = lambda x, eo=embedder_obj: eo.embed(x) |
|
return embed, embedder_obj.out_dim |
|
|
|
|
|
class APOPMeter: |
|
def __init__(self) -> None: |
|
self.tp = 0 |
|
self.fp = 0 |
|
self.tn = 0 |
|
self.fn = 0 |
|
|
|
def update(self, pred, gt): |
|
""" |
|
Input: |
|
pred, gt: Tensor() |
|
""" |
|
assert pred.shape == gt.shape |
|
self.tp += torch.logical_and(pred == 1, gt == 1).sum().item() |
|
self.fp += torch.logical_and(pred == 1, gt == 0).sum().item() |
|
self.tn += torch.logical_and(pred == 0, gt == 0).sum().item() |
|
self.tn += torch.logical_and(pred == 1, gt == 0).sum().item() |
|
|
|
def update_cm(self, tp, fp, tn, fn): |
|
self.tp += tp |
|
self.fp += fp |
|
self.tn += tn |
|
self.tn += fn |
|
|
|
|
|
def inverse_sigmoid(x, eps=1e-5): |
|
x = x.clamp(min=0, max=1) |
|
x1 = x.clamp(min=eps) |
|
x2 = (1 - x).clamp(min=eps) |
|
return torch.log(x1 / x2) |
|
|
|
|
|
def get_raw_dict(args): |
|
""" |
|
return the dicf contained in args. |
|
|
|
e.g: |
|
>>> with open(path, 'w') as f: |
|
json.dump(get_raw_dict(args), f, indent=2) |
|
""" |
|
if isinstance(args, argparse.Namespace): |
|
return vars(args) |
|
elif isinstance(args, dict): |
|
return args |
|
elif isinstance(args, SLConfig): |
|
return args._cfg_dict |
|
else: |
|
raise NotImplementedError("Unknown type {}".format(type(args))) |
|
|
|
|
|
def stat_tensors(tensor): |
|
assert tensor.dim() == 1 |
|
tensor_sm = tensor.softmax(0) |
|
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum() |
|
|
|
return { |
|
"max": tensor.max(), |
|
"min": tensor.min(), |
|
"mean": tensor.mean(), |
|
"var": tensor.var(), |
|
"std": tensor.var() ** 0.5, |
|
"entropy": entropy, |
|
} |
|
|
|
|
|
class NiceRepr: |
|
"""Inherit from this class and define ``__nice__`` to "nicely" print your |
|
objects. |
|
|
|
Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function |
|
Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. |
|
If the inheriting class has a ``__len__``, method then the default |
|
``__nice__`` method will return its length. |
|
|
|
Example: |
|
>>> class Foo(NiceRepr): |
|
... def __nice__(self): |
|
... return 'info' |
|
>>> foo = Foo() |
|
>>> assert str(foo) == '<Foo(info)>' |
|
>>> assert repr(foo).startswith('<Foo(info) at ') |
|
|
|
Example: |
|
>>> class Bar(NiceRepr): |
|
... pass |
|
>>> bar = Bar() |
|
>>> import pytest |
|
>>> with pytest.warns(None) as record: |
|
>>> assert 'object at' in str(bar) |
|
>>> assert 'object at' in repr(bar) |
|
|
|
Example: |
|
>>> class Baz(NiceRepr): |
|
... def __len__(self): |
|
... return 5 |
|
>>> baz = Baz() |
|
>>> assert str(baz) == '<Baz(5)>' |
|
""" |
|
|
|
def __nice__(self): |
|
"""str: a "nice" summary string describing this module""" |
|
if hasattr(self, "__len__"): |
|
|
|
|
|
return str(len(self)) |
|
else: |
|
|
|
raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}") |
|
|
|
def __repr__(self): |
|
"""str: the string of the module""" |
|
try: |
|
nice = self.__nice__() |
|
classname = self.__class__.__name__ |
|
return f"<{classname}({nice}) at {hex(id(self))}>" |
|
except NotImplementedError as ex: |
|
warnings.warn(str(ex), category=RuntimeWarning) |
|
return object.__repr__(self) |
|
|
|
def __str__(self): |
|
"""str: the string of the module""" |
|
try: |
|
classname = self.__class__.__name__ |
|
nice = self.__nice__() |
|
return f"<{classname}({nice})>" |
|
except NotImplementedError as ex: |
|
warnings.warn(str(ex), category=RuntimeWarning) |
|
return object.__repr__(self) |
|
|
|
|
|
def ensure_rng(rng=None): |
|
"""Coerces input into a random number generator. |
|
|
|
If the input is None, then a global random state is returned. |
|
|
|
If the input is a numeric value, then that is used as a seed to construct a |
|
random state. Otherwise the input is returned as-is. |
|
|
|
Adapted from [1]_. |
|
|
|
Args: |
|
rng (int | numpy.random.RandomState | None): |
|
if None, then defaults to the global rng. Otherwise this can be an |
|
integer or a RandomState class |
|
Returns: |
|
(numpy.random.RandomState) : rng - |
|
a numpy random number generator |
|
|
|
References: |
|
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 |
|
""" |
|
|
|
if rng is None: |
|
rng = np.random.mtrand._rand |
|
elif isinstance(rng, int): |
|
rng = np.random.RandomState(rng) |
|
else: |
|
rng = rng |
|
return rng |
|
|
|
|
|
def random_boxes(num=1, scale=1, rng=None): |
|
"""Simple version of ``kwimage.Boxes.random`` |
|
|
|
Returns: |
|
Tensor: shape (n, 4) in x1, y1, x2, y2 format. |
|
|
|
References: |
|
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 |
|
|
|
Example: |
|
>>> num = 3 |
|
>>> scale = 512 |
|
>>> rng = 0 |
|
>>> boxes = random_boxes(num, scale, rng) |
|
>>> print(boxes) |
|
tensor([[280.9925, 278.9802, 308.6148, 366.1769], |
|
[216.9113, 330.6978, 224.0446, 456.5878], |
|
[405.3632, 196.3221, 493.3953, 270.7942]]) |
|
""" |
|
rng = ensure_rng(rng) |
|
|
|
tlbr = rng.rand(num, 4).astype(np.float32) |
|
|
|
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) |
|
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) |
|
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) |
|
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) |
|
|
|
tlbr[:, 0] = tl_x * scale |
|
tlbr[:, 1] = tl_y * scale |
|
tlbr[:, 2] = br_x * scale |
|
tlbr[:, 3] = br_y * scale |
|
|
|
boxes = torch.from_numpy(tlbr) |
|
return boxes |
|
|
|
|
|
class ModelEma(torch.nn.Module): |
|
def __init__(self, model, decay=0.9997, device=None): |
|
super(ModelEma, self).__init__() |
|
|
|
self.module = deepcopy(model) |
|
self.module.eval() |
|
|
|
|
|
|
|
self.decay = decay |
|
self.device = device |
|
if self.device is not None: |
|
self.module.to(device=device) |
|
|
|
def _update(self, model, update_fn): |
|
with torch.no_grad(): |
|
for ema_v, model_v in zip( |
|
self.module.state_dict().values(), model.state_dict().values() |
|
): |
|
if self.device is not None: |
|
model_v = model_v.to(device=self.device) |
|
ema_v.copy_(update_fn(ema_v, model_v)) |
|
|
|
def update(self, model): |
|
self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m) |
|
|
|
def set(self, model): |
|
self._update(model, update_fn=lambda e, m: m) |
|
|
|
|
|
class BestMetricSingle: |
|
def __init__(self, init_res=0.0, better="large") -> None: |
|
self.init_res = init_res |
|
self.best_res = init_res |
|
self.best_ep = -1 |
|
|
|
self.better = better |
|
assert better in ["large", "small"] |
|
|
|
def isbetter(self, new_res, old_res): |
|
if self.better == "large": |
|
return new_res > old_res |
|
if self.better == "small": |
|
return new_res < old_res |
|
|
|
def update(self, new_res, ep): |
|
if self.isbetter(new_res, self.best_res): |
|
self.best_res = new_res |
|
self.best_ep = ep |
|
return True |
|
return False |
|
|
|
def __str__(self) -> str: |
|
return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep) |
|
|
|
def __repr__(self) -> str: |
|
return self.__str__() |
|
|
|
def summary(self) -> dict: |
|
return { |
|
"best_res": self.best_res, |
|
"best_ep": self.best_ep, |
|
} |
|
|
|
|
|
class BestMetricHolder: |
|
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None: |
|
self.best_all = BestMetricSingle(init_res, better) |
|
self.use_ema = use_ema |
|
if use_ema: |
|
self.best_ema = BestMetricSingle(init_res, better) |
|
self.best_regular = BestMetricSingle(init_res, better) |
|
|
|
def update(self, new_res, epoch, is_ema=False): |
|
""" |
|
return if the results is the best. |
|
""" |
|
if not self.use_ema: |
|
return self.best_all.update(new_res, epoch) |
|
else: |
|
if is_ema: |
|
self.best_ema.update(new_res, epoch) |
|
return self.best_all.update(new_res, epoch) |
|
else: |
|
self.best_regular.update(new_res, epoch) |
|
return self.best_all.update(new_res, epoch) |
|
|
|
def summary(self): |
|
if not self.use_ema: |
|
return self.best_all.summary() |
|
|
|
res = {} |
|
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()}) |
|
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()}) |
|
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()}) |
|
return res |
|
|
|
def __repr__(self) -> str: |
|
return json.dumps(self.summary(), indent=2) |
|
|
|
def __str__(self) -> str: |
|
return self.__repr__() |
|
|
|
|
|
def targets_to(targets: List[Dict[str, Any]], device): |
|
"""Moves the target dicts to the given device.""" |
|
excluded_keys = [ |
|
"questionId", |
|
"tokens_positive", |
|
"strings_positive", |
|
"tokens", |
|
"dataset_name", |
|
"sentence_id", |
|
"original_img_id", |
|
"nb_eval", |
|
"task_id", |
|
"original_id", |
|
"token_span", |
|
"caption", |
|
"dataset_type", |
|
] |
|
return [ |
|
{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets |
|
] |
|
|
|
|
|
def get_phrases_from_posmap( |
|
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer, left_idx: int = 0, right_idx: int = 255 |
|
): |
|
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor" |
|
if posmap.dim() == 1: |
|
posmap[0: left_idx + 1] = False |
|
posmap[right_idx:] = False |
|
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist() |
|
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx] |
|
return tokenizer.decode(token_ids) |
|
else: |
|
raise NotImplementedError("posmap must be 1-dim") |
|
|