File size: 12,826 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import importlib
import sys
import os

sys.path.append('.')
sys.path.append('..')

import cv2
from PIL import Image
from skimage.morphology.binary import binary_dilation

import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms

from networks.models import build_vos_model
from networks.engines import build_engine
from utils.checkpoint import load_network

from dataloaders.eval_datasets import VOSTest
import dataloaders.video_transforms as tr
from utils.image import save_mask

_palette = [
    255, 0, 0, 0, 0, 139, 255, 255, 84, 0, 255, 0, 139, 0, 139, 0, 128, 128,
    128, 128, 128, 139, 0, 0, 218, 165, 32, 144, 238, 144, 160, 82, 45, 148, 0,
    211, 255, 0, 255, 30, 144, 255, 255, 218, 185, 85, 107, 47, 255, 140, 0,
    50, 205, 50, 123, 104, 238, 240, 230, 140, 72, 61, 139, 128, 128, 0, 0, 0,
    205, 221, 160, 221, 143, 188, 143, 127, 255, 212, 176, 224, 230, 244, 164,
    96, 250, 128, 114, 70, 130, 180, 0, 128, 0, 173, 255, 47, 255, 105, 180,
    238, 130, 238, 154, 205, 50, 220, 20, 60, 176, 48, 96, 0, 206, 209, 0, 191,
    255, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45,
    45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51,
    52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58,
    58, 58, 59, 59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63, 64, 64,
    64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70,
    71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 77,
    77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83,
    83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89,
    90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 96,
    96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 100, 100, 100, 101, 101, 101,
    102, 102, 102, 103, 103, 103, 104, 104, 104, 105, 105, 105, 106, 106, 106,
    107, 107, 107, 108, 108, 108, 109, 109, 109, 110, 110, 110, 111, 111, 111,
    112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116,
    117, 117, 117, 118, 118, 118, 119, 119, 119, 120, 120, 120, 121, 121, 121,
    122, 122, 122, 123, 123, 123, 124, 124, 124, 125, 125, 125, 126, 126, 126,
    127, 127, 127, 128, 128, 128, 129, 129, 129, 130, 130, 130, 131, 131, 131,
    132, 132, 132, 133, 133, 133, 134, 134, 134, 135, 135, 135, 136, 136, 136,
    137, 137, 137, 138, 138, 138, 139, 139, 139, 140, 140, 140, 141, 141, 141,
    142, 142, 142, 143, 143, 143, 144, 144, 144, 145, 145, 145, 146, 146, 146,
    147, 147, 147, 148, 148, 148, 149, 149, 149, 150, 150, 150, 151, 151, 151,
    152, 152, 152, 153, 153, 153, 154, 154, 154, 155, 155, 155, 156, 156, 156,
    157, 157, 157, 158, 158, 158, 159, 159, 159, 160, 160, 160, 161, 161, 161,
    162, 162, 162, 163, 163, 163, 164, 164, 164, 165, 165, 165, 166, 166, 166,
    167, 167, 167, 168, 168, 168, 169, 169, 169, 170, 170, 170, 171, 171, 171,
    172, 172, 172, 173, 173, 173, 174, 174, 174, 175, 175, 175, 176, 176, 176,
    177, 177, 177, 178, 178, 178, 179, 179, 179, 180, 180, 180, 181, 181, 181,
    182, 182, 182, 183, 183, 183, 184, 184, 184, 185, 185, 185, 186, 186, 186,
    187, 187, 187, 188, 188, 188, 189, 189, 189, 190, 190, 190, 191, 191, 191,
    192, 192, 192, 193, 193, 193, 194, 194, 194, 195, 195, 195, 196, 196, 196,
    197, 197, 197, 198, 198, 198, 199, 199, 199, 200, 200, 200, 201, 201, 201,
    202, 202, 202, 203, 203, 203, 204, 204, 204, 205, 205, 205, 206, 206, 206,
    207, 207, 207, 208, 208, 208, 209, 209, 209, 210, 210, 210, 211, 211, 211,
    212, 212, 212, 213, 213, 213, 214, 214, 214, 215, 215, 215, 216, 216, 216,
    217, 217, 217, 218, 218, 218, 219, 219, 219, 220, 220, 220, 221, 221, 221,
    222, 222, 222, 223, 223, 223, 224, 224, 224, 225, 225, 225, 226, 226, 226,
    227, 227, 227, 228, 228, 228, 229, 229, 229, 230, 230, 230, 231, 231, 231,
    232, 232, 232, 233, 233, 233, 234, 234, 234, 235, 235, 235, 236, 236, 236,
    237, 237, 237, 238, 238, 238, 239, 239, 239, 240, 240, 240, 241, 241, 241,
    242, 242, 242, 243, 243, 243, 244, 244, 244, 245, 245, 245, 246, 246, 246,
    247, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 251, 251, 251,
    252, 252, 252, 253, 253, 253, 254, 254, 254, 255, 255, 255, 0, 0, 0
]
color_palette = np.array(_palette).reshape(-1, 3)


def overlay(image, mask, colors=[255, 0, 0], cscale=1, alpha=0.4):
    colors = np.atleast_2d(colors) * cscale

    im_overlay = image.copy()
    object_ids = np.unique(mask)

    for object_id in object_ids[1:]:
        # Overlay color on  binary mask

        foreground = image * alpha + np.ones(
            image.shape) * (1 - alpha) * np.array(colors[object_id])
        binary_mask = mask == object_id

        # Compose image
        im_overlay[binary_mask] = foreground[binary_mask]

        countours = binary_dilation(binary_mask) ^ binary_mask
        im_overlay[countours, :] = 0

    return im_overlay.astype(image.dtype)


def demo(cfg):
    video_fps = 15
    gpu_id = cfg.TEST_GPU_ID

    # Load pre-trained model
    print('Build AOT model.')
    model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(gpu_id)

    print('Load checkpoint from {}'.format(cfg.TEST_CKPT_PATH))
    model, _ = load_network(model, cfg.TEST_CKPT_PATH, gpu_id)

    print('Build AOT engine.')
    engine = build_engine(cfg.MODEL_ENGINE,
                          phase='eval',
                          aot_model=model,
                          gpu_id=gpu_id,
                          long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP)

    # Prepare datasets for each sequence
    transform = transforms.Compose([
        tr.MultiRestrictSize(cfg.TEST_MIN_SIZE, cfg.TEST_MAX_SIZE,
                             cfg.TEST_FLIP, cfg.TEST_MULTISCALE,
                             cfg.MODEL_ALIGN_CORNERS),
        tr.MultiToTensor()
    ])
    image_root = os.path.join(cfg.TEST_DATA_PATH, 'images')
    label_root = os.path.join(cfg.TEST_DATA_PATH, 'masks')

    sequences = os.listdir(image_root)
    seq_datasets = []
    for seq_name in sequences:
        print('Build a dataset for sequence {}.'.format(seq_name))
        seq_images = np.sort(os.listdir(os.path.join(image_root, seq_name)))
        seq_labels = [seq_images[0].replace('jpg', 'png')]
        seq_dataset = VOSTest(image_root,
                              label_root,
                              seq_name,
                              seq_images,
                              seq_labels,
                              transform=transform)
        seq_datasets.append(seq_dataset)

    # Infer
    output_root = cfg.TEST_OUTPUT_PATH
    output_mask_root = os.path.join(output_root, 'pred_masks')
    if not os.path.exists(output_mask_root):
        os.makedirs(output_mask_root)

    for seq_dataset in seq_datasets:
        seq_name = seq_dataset.seq_name
        image_seq_root = os.path.join(image_root, seq_name)
        output_mask_seq_root = os.path.join(output_mask_root, seq_name)
        if not os.path.exists(output_mask_seq_root):
            os.makedirs(output_mask_seq_root)
        print('Build a dataloader for sequence {}.'.format(seq_name))
        seq_dataloader = DataLoader(seq_dataset,
                                    batch_size=1,
                                    shuffle=False,
                                    num_workers=cfg.TEST_WORKERS,
                                    pin_memory=True)

        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        output_video_path = os.path.join(
            output_root, '{}_{}fps.avi'.format(seq_name, video_fps))

        print('Start the inference of sequence {}:'.format(seq_name))
        model.eval()
        engine.restart_engine()
        with torch.no_grad():
            for frame_idx, samples in enumerate(seq_dataloader):
                sample = samples[0]
                img_name = sample['meta']['current_name'][0]

                obj_nums = sample['meta']['obj_num']
                output_height = sample['meta']['height']
                output_width = sample['meta']['width']
                obj_idx = sample['meta']['obj_idx']

                obj_nums = [int(obj_num) for obj_num in obj_nums]
                obj_idx = [int(_obj_idx) for _obj_idx in obj_idx]

                current_img = sample['current_img']
                current_img = current_img.cuda(gpu_id, non_blocking=True)

                if frame_idx == 0:
                    videoWriter = cv2.VideoWriter(
                        output_video_path, fourcc, video_fps,
                        (int(output_width), int(output_height)))
                    print(
                        'Object number: {}. Inference size: {}x{}. Output size: {}x{}.'
                        .format(obj_nums[0],
                                current_img.size()[2],
                                current_img.size()[3], int(output_height),
                                int(output_width)))
                    current_label = sample['current_label'].cuda(
                        gpu_id, non_blocking=True).float()
                    current_label = F.interpolate(current_label,
                                                  size=current_img.size()[2:],
                                                  mode="nearest")
                    # add reference frame
                    engine.add_reference_frame(current_img,
                                               current_label,
                                               frame_step=0,
                                               obj_nums=obj_nums)
                else:
                    print('Processing image {}...'.format(img_name))
                    # predict segmentation
                    engine.match_propogate_one_frame(current_img)
                    pred_logit = engine.decode_current_logits(
                        (output_height, output_width))
                    pred_prob = torch.softmax(pred_logit, dim=1)
                    pred_label = torch.argmax(pred_prob, dim=1,
                                              keepdim=True).float()
                    _pred_label = F.interpolate(pred_label,
                                                size=engine.input_size_2d,
                                                mode="nearest")
                    # update memory
                    engine.update_memory(_pred_label)

                    # save results
                    input_image_path = os.path.join(image_seq_root, img_name)
                    output_mask_path = os.path.join(
                        output_mask_seq_root,
                        img_name.split('.')[0] + '.png')

                    pred_label = Image.fromarray(
                        pred_label.squeeze(0).squeeze(0).cpu().numpy().astype(
                            'uint8')).convert('P')
                    pred_label.putpalette(_palette)
                    pred_label.save(output_mask_path)

                    input_image = Image.open(input_image_path)

                    overlayed_image = overlay(
                        np.array(input_image, dtype=np.uint8),
                        np.array(pred_label, dtype=np.uint8), color_palette)
                    videoWriter.write(overlayed_image[..., [2, 1, 0]])

        print('Save a visualization video to {}.'.format(output_video_path))
        videoWriter.release()


def main():
    import argparse
    parser = argparse.ArgumentParser(description="AOT Demo")
    parser.add_argument('--exp_name', type=str, default='default')

    parser.add_argument('--stage', type=str, default='pre_ytb_dav')
    parser.add_argument('--model', type=str, default='r50_aotl')

    parser.add_argument('--gpu_id', type=int, default=0)

    parser.add_argument('--data_path', type=str, default='./datasets/Demo')
    parser.add_argument('--output_path', type=str, default='./demo_output')
    parser.add_argument('--ckpt_path',
                        type=str,
                        default='./pretrain_models/R50_AOTL_PRE_YTB_DAV.pth')

    parser.add_argument('--max_resolution', type=float, default=480 * 1.3)

    parser.add_argument('--amp', action='store_true')
    parser.set_defaults(amp=False)

    args = parser.parse_args()

    engine_config = importlib.import_module('configs.' + args.stage)
    cfg = engine_config.EngineConfig(args.exp_name, args.model)

    cfg.TEST_GPU_ID = args.gpu_id

    cfg.TEST_CKPT_PATH = args.ckpt_path
    cfg.TEST_DATA_PATH = args.data_path
    cfg.TEST_OUTPUT_PATH = args.output_path

    cfg.TEST_MIN_SIZE = None
    cfg.TEST_MAX_SIZE = args.max_resolution * 800. / 480.

    if args.amp:
        with torch.cuda.amp.autocast(enabled=True):
            demo(cfg)
    else:
        demo(cfg)


if __name__ == '__main__':
    main()