File size: 3,343 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import torch
from .resnet import ResNet, Bottleneck
__all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269']
_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth'
_model_sha256 = {
name: checksum
for checksum, name in [
('528c19ca', 'resnest50'),
('22405ba7', 'resnest101'),
('75117900', 'resnest200'),
('0cc87c48', 'resnest269'),
]
}
def short_hash(name):
if name not in _model_sha256:
raise ValueError(
'Pretrained model for {name} is not available.'.format(name=name))
return _model_sha256[name][:8]
resnest_model_urls = {
name: _url_format.format(name, short_hash(name))
for name in _model_sha256.keys()
}
def resnest50(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=False,
**kwargs)
if pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(resnest_model_urls['resnest50'],
progress=True,
check_hash=True))
return model
def resnest101(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
**kwargs)
if pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest101'],
progress=True,
check_hash=True))
return model
def resnest200(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 24, 36, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
**kwargs)
if pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest200'],
progress=True,
check_hash=True))
return model
def resnest269(pretrained=False, root='~/.encoding/models', **kwargs):
model = ResNet(Bottleneck, [3, 30, 48, 8],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
**kwargs)
if pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(
resnest_model_urls['resnest269'],
progress=True,
check_hash=True))
return model
|