File size: 9,398 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# ------------------------------------------------------------------------
# Grounding DINO. Midified by Shilong Liu.
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
COCO evaluator that works in distributed mode.
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
The difference is that there is less copy-pasting from pycocotools
in the end of the file, as python3 can suppress prints with contextlib
"""
import contextlib
import copy
import os
import numpy as np
import pycocotools.mask as mask_util
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from groundingdino.util.misc import all_gather
class CocoGroundingEvaluator(object):
def __init__(self, coco_gt, iou_types, useCats=True):
assert isinstance(iou_types, (list, tuple))
coco_gt = copy.deepcopy(coco_gt)
self.coco_gt = coco_gt
self.iou_types = iou_types
self.coco_eval = {}
for iou_type in iou_types:
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
self.coco_eval[iou_type].useCats = useCats
self.img_ids = []
self.eval_imgs = {k: [] for k in iou_types}
self.useCats = useCats
def update(self, predictions):
img_ids = list(np.unique(list(predictions.keys())))
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
# suppress pycocotools prints
with open(os.devnull, "w") as devnull:
with contextlib.redirect_stdout(devnull):
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
coco_eval = self.coco_eval[iou_type]
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = list(img_ids)
coco_eval.params.useCats = self.useCats
img_ids, eval_imgs = evaluate(coco_eval)
self.eval_imgs[iou_type].append(eval_imgs)
def synchronize_between_processes(self):
for iou_type in self.iou_types:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
def accumulate(self):
for coco_eval in self.coco_eval.values():
coco_eval.accumulate()
def summarize(self):
for iou_type, coco_eval in self.coco_eval.items():
print("IoU metric: {}".format(iou_type))
coco_eval.summarize()
def prepare(self, predictions, iou_type):
if iou_type == "bbox":
return self.prepare_for_coco_detection(predictions)
elif iou_type == "segm":
return self.prepare_for_coco_segmentation(predictions)
elif iou_type == "keypoints":
return self.prepare_for_coco_keypoint(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_coco_detection(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return coco_results
def prepare_for_coco_segmentation(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
scores = prediction["scores"]
labels = prediction["labels"]
masks = prediction["masks"]
masks = masks > 0.5
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
def prepare_for_coco_keypoint(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
keypoints = prediction["keypoints"]
keypoints = keypoints.flatten(start_dim=1).tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"keypoints": keypoint,
"score": scores[k],
}
for k, keypoint in enumerate(keypoints)
]
)
return coco_results
def convert_to_xywh(boxes):
xmin, ymin, xmax, ymax = boxes.unbind(1)
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
def merge(img_ids, eval_imgs):
all_img_ids = all_gather(img_ids)
all_eval_imgs = all_gather(eval_imgs)
merged_img_ids = []
for p in all_img_ids:
merged_img_ids.extend(p)
merged_eval_imgs = []
for p in all_eval_imgs:
merged_eval_imgs.append(p)
merged_img_ids = np.array(merged_img_ids)
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
# keep only unique (and in sorted order) images
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
merged_eval_imgs = merged_eval_imgs[..., idx]
return merged_img_ids, merged_eval_imgs
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
img_ids, eval_imgs = merge(img_ids, eval_imgs)
img_ids = list(img_ids)
eval_imgs = list(eval_imgs.flatten())
coco_eval.evalImgs = eval_imgs
coco_eval.params.imgIds = img_ids
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
#################################################################
# From pycocotools, just removed the prints and fixed
# a Python3 bug about unicode not defined
#################################################################
def evaluate(self):
"""
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
"""
# tic = time.time()
# print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = "segm" if p.useSegm == 1 else "bbox"
print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType))
# print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == "segm" or p.iouType == "bbox":
computeIoU = self.computeIoU
elif p.iouType == "keypoints":
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
evalImgs = [
evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
# this is NOT in the pycocotools code, but could be done outside
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
self._paramsEval = copy.deepcopy(self.params)
# toc = time.time()
# print('DONE (t={:0.2f}s).'.format(toc-tic))
return p.imgIds, evalImgs
#################################################################
# end of straight copy from pycocotools, just removing the prints
#################################################################
|