File size: 22,503 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "901c8ef3",
"metadata": {},
"outputs": [],
"source": [
"# Copyright (c) Meta Platforms, Inc. and affiliates."
]
},
{
"cell_type": "markdown",
"id": "1662bb7c",
"metadata": {},
"source": [
"# Produces masks from prompts using an ONNX model"
]
},
{
"cell_type": "markdown",
"id": "7fcc21a0",
"metadata": {},
"source": [
"SAM's prompt encoder and mask decoder are very lightweight, which allows for efficient computation of a mask given user input. This notebook shows an example of how to export and use this lightweight component of the model in ONNX format, allowing it to run on a variety of platforms that support an ONNX runtime."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "86daff77",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import display, HTML\n",
"display(HTML(\n",
"\"\"\"\n",
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>\n",
"\"\"\"\n",
"))"
]
},
{
"cell_type": "markdown",
"id": "55ae4e00",
"metadata": {},
"source": [
"## Environment Set-up"
]
},
{
"cell_type": "markdown",
"id": "109a5cc2",
"metadata": {},
"source": [
"If running locally using jupyter, first install `segment_anything` in your environment using the [installation instructions](https://github.com/facebookresearch/segment-anything#installation) in the repository. The latest stable versions of PyTorch and ONNX are recommended for this notebook. If running from Google Colab, set `using_collab=True` below and run the cell. In Colab, be sure to select 'GPU' under 'Edit'->'Notebook Settings'->'Hardware accelerator'."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "39b99fc4",
"metadata": {},
"outputs": [],
"source": [
"using_colab = False"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "296a69be",
"metadata": {},
"outputs": [],
"source": [
"if using_colab:\n",
" import torch\n",
" import torchvision\n",
" print(\"PyTorch version:\", torch.__version__)\n",
" print(\"Torchvision version:\", torchvision.__version__)\n",
" print(\"CUDA is available:\", torch.cuda.is_available())\n",
" import sys\n",
" !{sys.executable} -m pip install opencv-python matplotlib onnx onnxruntime\n",
" !{sys.executable} -m pip install 'git+https://github.com/facebookresearch/segment-anything.git'\n",
" \n",
" !mkdir images\n",
" !wget -P images https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg\n",
" \n",
" !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
]
},
{
"cell_type": "markdown",
"id": "dc4a58be",
"metadata": {},
"source": [
"## Set-up"
]
},
{
"cell_type": "markdown",
"id": "42396e8d",
"metadata": {},
"source": [
"Note that this notebook requires both the `onnx` and `onnxruntime` optional dependencies, in addition to `opencv-python` and `matplotlib` for visualization."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c712610",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import numpy as np\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"from segment_anything import sam_model_registry, SamPredictor\n",
"from segment_anything.utils.onnx import SamOnnxModel\n",
"\n",
"import onnxruntime\n",
"from onnxruntime.quantization import QuantType\n",
"from onnxruntime.quantization.quantize import quantize_dynamic"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f29441b9",
"metadata": {},
"outputs": [],
"source": [
"def show_mask(mask, ax):\n",
" color = np.array([30/255, 144/255, 255/255, 0.6])\n",
" h, w = mask.shape[-2:]\n",
" mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
" ax.imshow(mask_image)\n",
" \n",
"def show_points(coords, labels, ax, marker_size=375):\n",
" pos_points = coords[labels==1]\n",
" neg_points = coords[labels==0]\n",
" ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n",
" ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n",
" \n",
"def show_box(box, ax):\n",
" x0, y0 = box[0], box[1]\n",
" w, h = box[2] - box[0], box[3] - box[1]\n",
" ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) "
]
},
{
"cell_type": "markdown",
"id": "bd0f6b2b",
"metadata": {},
"source": [
"## Export an ONNX model"
]
},
{
"cell_type": "markdown",
"id": "1540f719",
"metadata": {},
"source": [
"Set the path below to a SAM model checkpoint, then load the model. This will be needed to both export the model and to calculate embeddings for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76fc53f4",
"metadata": {},
"outputs": [],
"source": [
"checkpoint = \"sam_vit_h_4b8939.pth\"\n",
"model_type = \"vit_h\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11bfc8aa",
"metadata": {},
"outputs": [],
"source": [
"sam = sam_model_registry[model_type](checkpoint=checkpoint)"
]
},
{
"cell_type": "markdown",
"id": "450c089c",
"metadata": {},
"source": [
"The script `segment-anything/scripts/export_onnx_model.py` can be used to export the necessary portion of SAM. Alternatively, run the following code to export an ONNX model. If you have already exported a model, set the path below and skip to the next section. Assure that the exported ONNX model aligns with the checkpoint and model type set above. This notebook expects the model was exported with the parameter `return_single_mask=True`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "38a8add8",
"metadata": {},
"outputs": [],
"source": [
"onnx_model_path = None # Set to use an already exported model, then skip to the next section."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7da638ba",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"import warnings\n",
"\n",
"onnx_model_path = \"sam_onnx_example.onnx\"\n",
"\n",
"onnx_model = SamOnnxModel(sam, return_single_mask=True)\n",
"\n",
"dynamic_axes = {\n",
" \"point_coords\": {1: \"num_points\"},\n",
" \"point_labels\": {1: \"num_points\"},\n",
"}\n",
"\n",
"embed_dim = sam.prompt_encoder.embed_dim\n",
"embed_size = sam.prompt_encoder.image_embedding_size\n",
"mask_input_size = [4 * x for x in embed_size]\n",
"dummy_inputs = {\n",
" \"image_embeddings\": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),\n",
" \"point_coords\": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),\n",
" \"point_labels\": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),\n",
" \"mask_input\": torch.randn(1, 1, *mask_input_size, dtype=torch.float),\n",
" \"has_mask_input\": torch.tensor([1], dtype=torch.float),\n",
" \"orig_im_size\": torch.tensor([1500, 2250], dtype=torch.float),\n",
"}\n",
"output_names = [\"masks\", \"iou_predictions\", \"low_res_masks\"]\n",
"\n",
"with warnings.catch_warnings():\n",
" warnings.filterwarnings(\"ignore\", category=torch.jit.TracerWarning)\n",
" warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
" with open(onnx_model_path, \"wb\") as f:\n",
" torch.onnx.export(\n",
" onnx_model,\n",
" tuple(dummy_inputs.values()),\n",
" f,\n",
" export_params=True,\n",
" verbose=False,\n",
" opset_version=17,\n",
" do_constant_folding=True,\n",
" input_names=list(dummy_inputs.keys()),\n",
" output_names=output_names,\n",
" dynamic_axes=dynamic_axes,\n",
" ) "
]
},
{
"cell_type": "markdown",
"id": "c450cf1a",
"metadata": {},
"source": [
"If desired, the model can additionally be quantized and optimized. We find this improves web runtime significantly for negligible change in qualitative performance. Run the next cell to quantize the model, or skip to the next section otherwise."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "235d39fe",
"metadata": {},
"outputs": [],
"source": [
"onnx_model_quantized_path = \"sam_onnx_quantized_example.onnx\"\n",
"quantize_dynamic(\n",
" model_input=onnx_model_path,\n",
" model_output=onnx_model_quantized_path,\n",
" optimize_model=True,\n",
" per_channel=False,\n",
" reduce_range=False,\n",
" weight_type=QuantType.QUInt8,\n",
")\n",
"onnx_model_path = onnx_model_quantized_path"
]
},
{
"cell_type": "markdown",
"id": "927a928b",
"metadata": {},
"source": [
"## Example Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6be6eb55",
"metadata": {},
"outputs": [],
"source": [
"image = cv2.imread('images/truck.jpg')\n",
"image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7e9a27a",
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10,10))\n",
"plt.imshow(image)\n",
"plt.axis('on')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "027b177b",
"metadata": {},
"source": [
"## Using an ONNX model"
]
},
{
"cell_type": "markdown",
"id": "778d4593",
"metadata": {},
"source": [
"Here as an example, we use `onnxruntime` in python on CPU to execute the ONNX model. However, any platform that supports an ONNX runtime could be used in principle. Launch the runtime session below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9689b1bf",
"metadata": {},
"outputs": [],
"source": [
"ort_session = onnxruntime.InferenceSession(onnx_model_path)"
]
},
{
"cell_type": "markdown",
"id": "7708ead6",
"metadata": {},
"source": [
"To use the ONNX model, the image must first be pre-processed using the SAM image encoder. This is a heavier weight process best performed on GPU. SamPredictor can be used as normal, then `.get_image_embedding()` will retreive the intermediate features."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26e067b4",
"metadata": {},
"outputs": [],
"source": [
"sam.to(device='cuda')\n",
"predictor = SamPredictor(sam)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ad3f0d6",
"metadata": {},
"outputs": [],
"source": [
"predictor.set_image(image)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8a6f0f07",
"metadata": {},
"outputs": [],
"source": [
"image_embedding = predictor.get_image_embedding().cpu().numpy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e112f33",
"metadata": {},
"outputs": [],
"source": [
"image_embedding.shape"
]
},
{
"cell_type": "markdown",
"id": "6337b654",
"metadata": {},
"source": [
"The ONNX model has a different input signature than `SamPredictor.predict`. The following inputs must all be supplied. Note the special cases for both point and mask inputs. All inputs are `np.float32`.\n",
"* `image_embeddings`: The image embedding from `predictor.get_image_embedding()`. Has a batch index of length 1.\n",
"* `point_coords`: Coordinates of sparse input prompts, corresponding to both point inputs and box inputs. Boxes are encoded using two points, one for the top-left corner and one for the bottom-right corner. *Coordinates must already be transformed to long-side 1024.* Has a batch index of length 1.\n",
"* `point_labels`: Labels for the sparse input prompts. 0 is a negative input point, 1 is a positive input point, 2 is a top-left box corner, 3 is a bottom-right box corner, and -1 is a padding point. *If there is no box input, a single padding point with label -1 and coordinates (0.0, 0.0) should be concatenated.*\n",
"* `mask_input`: A mask input to the model with shape 1x1x256x256. This must be supplied even if there is no mask input. In this case, it can just be zeros.\n",
"* `has_mask_input`: An indicator for the mask input. 1 indicates a mask input, 0 indicates no mask input.\n",
"* `orig_im_size`: The size of the input image in (H,W) format, before any transformation. \n",
"\n",
"Additionally, the ONNX model does not threshold the output mask logits. To obtain a binary mask, threshold at `sam.mask_threshold` (equal to 0.0)."
]
},
{
"cell_type": "markdown",
"id": "bf5a9f55",
"metadata": {},
"source": [
"### Example point input"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c0deef0",
"metadata": {},
"outputs": [],
"source": [
"input_point = np.array([[500, 375]])\n",
"input_label = np.array([1])"
]
},
{
"cell_type": "markdown",
"id": "7256394c",
"metadata": {},
"source": [
"Add a batch index, concatenate a padding point, and transform."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f69903e",
"metadata": {},
"outputs": [],
"source": [
"onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
"onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
"\n",
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)\n"
]
},
{
"cell_type": "markdown",
"id": "b188dc53",
"metadata": {},
"source": [
"Create an empty mask input and an indicator for no mask."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5cb52bcf",
"metadata": {},
"outputs": [],
"source": [
"onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
"onnx_has_mask_input = np.zeros(1, dtype=np.float32)"
]
},
{
"cell_type": "markdown",
"id": "a99c2cc5",
"metadata": {},
"source": [
"Package the inputs to run in the onnx model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1d7ea11",
"metadata": {},
"outputs": [],
"source": [
"ort_inputs = {\n",
" \"image_embeddings\": image_embedding,\n",
" \"point_coords\": onnx_coord,\n",
" \"point_labels\": onnx_label,\n",
" \"mask_input\": onnx_mask_input,\n",
" \"has_mask_input\": onnx_has_mask_input,\n",
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "4b6409c9",
"metadata": {},
"source": [
"Predict a mask and threshold it."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc4cc082",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"masks, _, low_res_logits = ort_session.run(None, ort_inputs)\n",
"masks = masks > predictor.model.mask_threshold"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d778a8fb",
"metadata": {},
"outputs": [],
"source": [
"masks.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "badb1175",
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10,10))\n",
"plt.imshow(image)\n",
"show_mask(masks, plt.gca())\n",
"show_points(input_point, input_label, plt.gca())\n",
"plt.axis('off')\n",
"plt.show() "
]
},
{
"cell_type": "markdown",
"id": "1f1d4d15",
"metadata": {},
"source": [
"### Example mask input"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b319da82",
"metadata": {},
"outputs": [],
"source": [
"input_point = np.array([[500, 375], [1125, 625]])\n",
"input_label = np.array([1, 1])\n",
"\n",
"# Use the mask output from the previous run. It is already in the correct form for input to the ONNX model.\n",
"onnx_mask_input = low_res_logits"
]
},
{
"cell_type": "markdown",
"id": "b1823b37",
"metadata": {},
"source": [
"Transform the points as in the previous example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8885130f",
"metadata": {},
"outputs": [],
"source": [
"onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
"onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
"\n",
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
]
},
{
"cell_type": "markdown",
"id": "28e47b69",
"metadata": {},
"source": [
"The `has_mask_input` indicator is now 1."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ab4483a",
"metadata": {},
"outputs": [],
"source": [
"onnx_has_mask_input = np.ones(1, dtype=np.float32)"
]
},
{
"cell_type": "markdown",
"id": "d3781955",
"metadata": {},
"source": [
"Package inputs, then predict and threshold the mask."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0c1ec096",
"metadata": {},
"outputs": [],
"source": [
"ort_inputs = {\n",
" \"image_embeddings\": image_embedding,\n",
" \"point_coords\": onnx_coord,\n",
" \"point_labels\": onnx_label,\n",
" \"mask_input\": onnx_mask_input,\n",
" \"has_mask_input\": onnx_has_mask_input,\n",
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
"}\n",
"\n",
"masks, _, _ = ort_session.run(None, ort_inputs)\n",
"masks = masks > predictor.model.mask_threshold"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1e36554b",
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10,10))\n",
"plt.imshow(image)\n",
"show_mask(masks, plt.gca())\n",
"show_points(input_point, input_label, plt.gca())\n",
"plt.axis('off')\n",
"plt.show() "
]
},
{
"cell_type": "markdown",
"id": "2ef211d0",
"metadata": {},
"source": [
"### Example box and point input"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "51e58d2e",
"metadata": {},
"outputs": [],
"source": [
"input_box = np.array([425, 600, 700, 875])\n",
"input_point = np.array([[575, 750]])\n",
"input_label = np.array([0])"
]
},
{
"cell_type": "markdown",
"id": "6e119dcb",
"metadata": {},
"source": [
"Add a batch index, concatenate a box and point inputs, add the appropriate labels for the box corners, and transform. There is no padding point since the input includes a box input."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfbe4911",
"metadata": {},
"outputs": [],
"source": [
"onnx_box_coords = input_box.reshape(2, 2)\n",
"onnx_box_labels = np.array([2,3])\n",
"\n",
"onnx_coord = np.concatenate([input_point, onnx_box_coords], axis=0)[None, :, :]\n",
"onnx_label = np.concatenate([input_label, onnx_box_labels], axis=0)[None, :].astype(np.float32)\n",
"\n",
"onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
]
},
{
"cell_type": "markdown",
"id": "65edabd2",
"metadata": {},
"source": [
"Package inputs, then predict and threshold the mask."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2abfba56",
"metadata": {},
"outputs": [],
"source": [
"onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
"onnx_has_mask_input = np.zeros(1, dtype=np.float32)\n",
"\n",
"ort_inputs = {\n",
" \"image_embeddings\": image_embedding,\n",
" \"point_coords\": onnx_coord,\n",
" \"point_labels\": onnx_label,\n",
" \"mask_input\": onnx_mask_input,\n",
" \"has_mask_input\": onnx_has_mask_input,\n",
" \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
"}\n",
"\n",
"masks, _, _ = ort_session.run(None, ort_inputs)\n",
"masks = masks > predictor.model.mask_threshold"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8301bf33",
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(image)\n",
"show_mask(masks[0], plt.gca())\n",
"show_box(input_box, plt.gca())\n",
"show_points(input_point, input_label, plt.gca())\n",
"plt.axis('off')\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|