File size: 8,416 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from torch import nn
from torch import Tensor
from typing import Callable, Optional, List
from utils.learning import freeze_params

__all__ = ['MobileNetV2']


def _make_divisible(v: float,
                    divisor: int,
                    min_value: Optional[int] = None) -> int:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNActivation(nn.Sequential):
    def __init__(
        self,
        in_planes: int,
        out_planes: int,
        kernel_size: int = 3,
        stride: int = 1,
        groups: int = 1,
        padding: int = -1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        activation_layer: Optional[Callable[..., nn.Module]] = None,
        dilation: int = 1,
    ) -> None:
        if padding == -1:
            padding = (kernel_size - 1) // 2 * dilation
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.ReLU6
        super().__init__(
            nn.Conv2d(in_planes,
                      out_planes,
                      kernel_size,
                      stride,
                      padding,
                      dilation=dilation,
                      groups=groups,
                      bias=False), norm_layer(out_planes),
            activation_layer(inplace=True))
        self.out_channels = out_planes


# necessary for backwards compatibility
ConvBNReLU = ConvBNActivation


class InvertedResidual(nn.Module):
    def __init__(
            self,
            inp: int,
            oup: int,
            stride: int,
            dilation: int,
            expand_ratio: int,
            norm_layer: Optional[Callable[..., nn.Module]] = None) -> None:
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        self.kernel_size = 3
        self.dilation = dilation

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers: List[nn.Module] = []
        if expand_ratio != 1:
            # pw
            layers.append(
                ConvBNReLU(inp,
                           hidden_dim,
                           kernel_size=1,
                           norm_layer=norm_layer))
        layers.extend([
            # dw
            ConvBNReLU(hidden_dim,
                       hidden_dim,
                       stride=stride,
                       dilation=dilation,
                       groups=hidden_dim,
                       norm_layer=norm_layer),
            # pw-linear
            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
            norm_layer(oup),
        ])
        self.conv = nn.Sequential(*layers)
        self.out_channels = oup
        self._is_cn = stride > 1

    def forward(self, x: Tensor) -> Tensor:
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self,
                 output_stride=8,
                 norm_layer: Optional[Callable[..., nn.Module]] = None,
                 width_mult: float = 1.0,
                 inverted_residual_setting: Optional[List[List[int]]] = None,
                 round_nearest: int = 8,
                 block: Optional[Callable[..., nn.Module]] = None,
                 freeze_at=0) -> None:
        """
        MobileNet V2 main class
        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
            block: Module specifying inverted residual building block for mobilenet
            norm_layer: Module specifying the normalization layer to use
        """
        super(MobileNetV2, self).__init__()

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        last_channel = 1280
        input_channel = 32
        current_stride = 1
        rate = 1

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(
                inverted_residual_setting[0]) != 4:
            raise ValueError("inverted_residual_setting should be non-empty "
                             "or a 4-element list, got {}".format(
                                 inverted_residual_setting))

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult,
                                        round_nearest)
        self.last_channel = _make_divisible(
            last_channel * max(1.0, width_mult), round_nearest)
        features: List[nn.Module] = [
            ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)
        ]
        current_stride *= 2
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            if current_stride == output_stride:
                stride = 1
                dilation = rate
                rate *= s
            else:
                stride = s
                dilation = 1
                current_stride *= s
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                if i == 0:
                    features.append(
                        block(input_channel, output_channel, stride, dilation,
                              t, norm_layer))
                else:
                    features.append(
                        block(input_channel, output_channel, 1, rate, t,
                              norm_layer))
                input_channel = output_channel

        # building last several layers
        features.append(
            ConvBNReLU(input_channel,
                       self.last_channel,
                       kernel_size=1,
                       norm_layer=norm_layer))
        # make it nn.Sequential
        self.features = nn.Sequential(*features)

        self._initialize_weights()

        feature_4x = self.features[0:4]
        feautre_8x = self.features[4:7]
        feature_16x = self.features[7:14]
        feature_32x = self.features[14:]

        self.stages = [feature_4x, feautre_8x, feature_16x, feature_32x]

        self.freeze(freeze_at)

    def forward(self, x):
        xs = []
        for stage in self.stages:
            x = stage(x)
            xs.append(x)
        return xs

    def _initialize_weights(self):
        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def freeze(self, freeze_at):
        if freeze_at >= 1:
            for m in self.stages[0][0]:
                freeze_params(m)

        for idx, stage in enumerate(self.stages, start=2):
            if freeze_at >= idx:
                freeze_params(stage)