File size: 23,571 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import random
import cv2
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as TF
import dataloaders.image_transforms as IT
cv2.setNumThreads(0)
class Resize(object):
"""Rescale the image in a sample to a given size.
Args:
output_size (tuple or int): Desired output size. If tuple, output is
matched to output_size. If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, output_size, use_padding=False):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
self.output_size = output_size
self.use_padding = use_padding
def __call__(self, sample):
return self.padding(sample) if self.use_padding else self.rescale(
sample)
def rescale(self, sample):
prev_img = sample['prev_img']
h, w = prev_img.shape[:2]
if self.output_size == (h, w):
return sample
else:
new_h, new_w = self.output_size
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if elem == 'prev_img' or elem == 'curr_img' or elem == 'ref_img':
flagval = cv2.INTER_CUBIC
else:
flagval = cv2.INTER_NEAREST
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
all_tmp = tmp
for tmp in all_tmp:
tmp = cv2.resize(tmp,
dsize=(new_w, new_h),
interpolation=flagval)
new_tmp.append(tmp)
tmp = new_tmp
else:
tmp = cv2.resize(tmp,
dsize=(new_w, new_h),
interpolation=flagval)
sample[elem] = tmp
return sample
def padding(self, sample):
prev_img = sample['prev_img']
h, w = prev_img.shape[:2]
if self.output_size == (h, w):
return sample
else:
new_h, new_w = self.output_size
def sep_pad(x):
x0 = np.random.randint(0, x + 1)
x1 = x - x0
return x0, x1
top_pad, bottom_pad = sep_pad(new_h - h)
left_pad, right_pad = sep_pad(new_w - w)
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if elem == 'prev_img' or elem == 'curr_img' or elem == 'ref_img':
pad_value = (124, 116, 104)
else:
pad_value = (0)
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
all_tmp = tmp
for tmp in all_tmp:
tmp = cv2.copyMakeBorder(tmp,
top_pad,
bottom_pad,
left_pad,
right_pad,
cv2.BORDER_CONSTANT,
value=pad_value)
new_tmp.append(tmp)
tmp = new_tmp
else:
tmp = cv2.copyMakeBorder(tmp,
top_pad,
bottom_pad,
left_pad,
right_pad,
cv2.BORDER_CONSTANT,
value=pad_value)
sample[elem] = tmp
return sample
class BalancedRandomCrop(object):
"""Crop randomly the image in a sample.
Args:
output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self,
output_size,
max_step=5,
max_obj_num=5,
min_obj_pixel_num=100):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
self.max_step = max_step
self.max_obj_num = max_obj_num
self.min_obj_pixel_num = min_obj_pixel_num
def __call__(self, sample):
image = sample['prev_img']
h, w = image.shape[:2]
new_h, new_w = self.output_size
new_h = h if new_h >= h else new_h
new_w = w if new_w >= w else new_w
ref_label = sample["ref_label"]
prev_label = sample["prev_label"]
curr_label = sample["curr_label"]
is_contain_obj = False
step = 0
while (not is_contain_obj) and (step < self.max_step):
step += 1
top = np.random.randint(0, h - new_h + 1)
left = np.random.randint(0, w - new_w + 1)
after_crop = []
contains = []
for elem in ([ref_label, prev_label] + curr_label):
tmp = elem[top:top + new_h, left:left + new_w]
contains.append(np.unique(tmp))
after_crop.append(tmp)
all_obj = list(np.sort(contains[0]))
if all_obj[-1] == 0:
continue
# remove background
if all_obj[0] == 0:
all_obj = all_obj[1:]
# remove small obj
new_all_obj = []
for obj_id in all_obj:
after_crop_pixels = np.sum(after_crop[0] == obj_id)
if after_crop_pixels > self.min_obj_pixel_num:
new_all_obj.append(obj_id)
if len(new_all_obj) == 0:
is_contain_obj = False
else:
is_contain_obj = True
if len(new_all_obj) > self.max_obj_num:
random.shuffle(new_all_obj)
new_all_obj = new_all_obj[:self.max_obj_num]
all_obj = [0] + new_all_obj
post_process = []
for elem in after_crop:
new_elem = elem * 0
for idx in range(len(all_obj)):
obj_id = all_obj[idx]
if obj_id == 0:
continue
mask = elem == obj_id
new_elem += (mask * idx).astype(np.uint8)
post_process.append(new_elem.astype(np.uint8))
sample["ref_label"] = post_process[0]
sample["prev_label"] = post_process[1]
curr_len = len(sample["curr_img"])
sample["curr_label"] = []
for idx in range(curr_len):
sample["curr_label"].append(post_process[idx + 2])
for elem in sample.keys():
if 'meta' in elem or 'label' in elem:
continue
if elem == 'curr_img':
new_tmp = []
for tmp_ in sample[elem]:
tmp_ = tmp_[top:top + new_h, left:left + new_w]
new_tmp.append(tmp_)
sample[elem] = new_tmp
else:
tmp = sample[elem]
tmp = tmp[top:top + new_h, left:left + new_w]
sample[elem] = tmp
obj_num = len(all_obj) - 1
sample['meta']['obj_num'] = obj_num
return sample
class RandomScale(object):
"""Randomly resize the image and the ground truth to specified scales.
Args:
scales (list): the list of scales
"""
def __init__(self, min_scale=1., max_scale=1.3, short_edge=None):
self.min_scale = min_scale
self.max_scale = max_scale
self.short_edge = short_edge
def __call__(self, sample):
# Fixed range of scales
sc = np.random.uniform(self.min_scale, self.max_scale)
# Align short edge
if self.short_edge is not None:
image = sample['prev_img']
h, w = image.shape[:2]
if h > w:
sc *= float(self.short_edge) / w
else:
sc *= float(self.short_edge) / h
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if elem == 'prev_img' or elem == 'curr_img' or elem == 'ref_img':
flagval = cv2.INTER_CUBIC
else:
flagval = cv2.INTER_NEAREST
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
for tmp_ in tmp:
tmp_ = cv2.resize(tmp_,
None,
fx=sc,
fy=sc,
interpolation=flagval)
new_tmp.append(tmp_)
tmp = new_tmp
else:
tmp = cv2.resize(tmp,
None,
fx=sc,
fy=sc,
interpolation=flagval)
sample[elem] = tmp
return sample
class RandomScaleV2(object):
"""Randomly resize the image and the ground truth to specified scales.
Args:
scales (list): the list of scales
"""
def __init__(self,
min_scale=0.36,
max_scale=1.0,
short_edge=None,
ratio=[3. / 4., 4. / 3.]):
self.min_scale = min_scale
self.max_scale = max_scale
self.short_edge = short_edge
self.ratio = ratio
def __call__(self, sample):
image = sample['prev_img']
h, w = image.shape[:2]
new_h, new_w = self.get_params(h, w)
sc_x = float(new_w) / w
sc_y = float(new_h) / h
# Align short edge
if not (self.short_edge is None):
if h > w:
sc_x *= float(self.short_edge) / w
sc_y *= float(self.short_edge) / w
else:
sc_x *= float(self.short_edge) / h
sc_y *= float(self.short_edge) / h
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if elem == 'prev_img' or elem == 'curr_img' or elem == 'ref_img':
flagval = cv2.INTER_CUBIC
else:
flagval = cv2.INTER_NEAREST
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
for tmp_ in tmp:
tmp_ = cv2.resize(tmp_,
None,
fx=sc_x,
fy=sc_y,
interpolation=flagval)
new_tmp.append(tmp_)
tmp = new_tmp
else:
tmp = cv2.resize(tmp,
None,
fx=sc_x,
fy=sc_y,
interpolation=flagval)
sample[elem] = tmp
return sample
def get_params(self, height, width):
area = height * width
log_ratio = [np.log(item) for item in self.ratio]
for _ in range(10):
target_area = area * np.random.uniform(self.min_scale**2,
self.max_scale**2)
aspect_ratio = np.exp(np.random.uniform(log_ratio[0],
log_ratio[1]))
w = int(round(np.sqrt(target_area * aspect_ratio)))
h = int(round(np.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
return h, w
# Fallback to central crop
in_ratio = float(width) / float(height)
if in_ratio < min(self.ratio):
w = width
h = int(round(w / min(self.ratio)))
elif in_ratio > max(self.ratio):
h = height
w = int(round(h * max(self.ratio)))
else: # whole image
w = width
h = height
return h, w
class RestrictSize(object):
"""Randomly resize the image and the ground truth to specified scales.
Args:
scales (list): the list of scales
"""
def __init__(self, max_short_edge=None, max_long_edge=800 * 1.3):
self.max_short_edge = max_short_edge
self.max_long_edge = max_long_edge
assert ((max_short_edge is None)) or ((max_long_edge is None))
def __call__(self, sample):
# Fixed range of scales
sc = None
image = sample['ref_img']
h, w = image.shape[:2]
# Align short edge
if not (self.max_short_edge is None):
if h > w:
short_edge = w
else:
short_edge = h
if short_edge < self.max_short_edge:
sc = float(self.max_short_edge) / short_edge
else:
if h > w:
long_edge = h
else:
long_edge = w
if long_edge > self.max_long_edge:
sc = float(self.max_long_edge) / long_edge
if sc is None:
new_h = h
new_w = w
else:
new_h = int(sc * h)
new_w = int(sc * w)
new_h = new_h - (new_h - 1) % 4
new_w = new_w - (new_w - 1) % 4
if new_h == h and new_w == w:
return sample
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if 'label' in elem:
flagval = cv2.INTER_NEAREST
else:
flagval = cv2.INTER_CUBIC
tmp = cv2.resize(tmp, dsize=(new_w, new_h), interpolation=flagval)
sample[elem] = tmp
return sample
class RandomHorizontalFlip(object):
"""Horizontally flip the given image and ground truth randomly with a probability of 0.5."""
def __init__(self, prob):
self.p = prob
def __call__(self, sample):
if random.random() < self.p:
for elem in sample.keys():
if 'meta' in elem:
continue
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
for tmp_ in sample[elem]:
tmp_ = cv2.flip(tmp_, flipCode=1)
new_tmp.append(tmp_)
sample[elem] = new_tmp
else:
tmp = sample[elem]
tmp = cv2.flip(tmp, flipCode=1)
sample[elem] = tmp
return sample
class RandomVerticalFlip(object):
"""Vertically flip the given image and ground truth randomly with a probability of 0.5."""
def __init__(self, prob=0.3):
self.p = prob
def __call__(self, sample):
if random.random() < self.p:
for elem in sample.keys():
if 'meta' in elem:
continue
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
for tmp_ in sample[elem]:
tmp_ = cv2.flip(tmp_, flipCode=0)
new_tmp.append(tmp_)
sample[elem] = new_tmp
else:
tmp = sample[elem]
tmp = cv2.flip(tmp, flipCode=0)
sample[elem] = tmp
return sample
class RandomGaussianBlur(object):
def __init__(self, prob=0.3, sigma=[0.1, 2.]):
self.aug = TF.RandomApply([IT.GaussianBlur(sigma)], p=prob)
def __call__(self, sample):
for elem in sample.keys():
if 'meta' in elem or 'label' in elem:
continue
if elem == 'curr_img':
new_tmp = []
for tmp_ in sample[elem]:
tmp_ = self.apply_augmentation(tmp_)
new_tmp.append(tmp_)
sample[elem] = new_tmp
else:
tmp = sample[elem]
tmp = self.apply_augmentation(tmp)
sample[elem] = tmp
return sample
def apply_augmentation(self, x):
x = Image.fromarray(np.uint8(x))
x = self.aug(x)
x = np.array(x, dtype=np.float32)
return x
class RandomGrayScale(RandomGaussianBlur):
def __init__(self, prob=0.2):
self.aug = TF.RandomGrayscale(p=prob)
class RandomColorJitter(RandomGaussianBlur):
def __init__(self,
prob=0.8,
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1):
self.aug = TF.RandomApply(
[TF.ColorJitter(brightness, contrast, saturation, hue)], p=prob)
class SubtractMeanImage(object):
def __init__(self, mean, change_channels=False):
self.mean = mean
self.change_channels = change_channels
def __call__(self, sample):
for elem in sample.keys():
if 'image' in elem:
if self.change_channels:
sample[elem] = sample[elem][:, :, [2, 1, 0]]
sample[elem] = np.subtract(
sample[elem], np.array(self.mean, dtype=np.float32))
return sample
def __str__(self):
return 'SubtractMeanImage' + str(self.mean)
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample):
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if elem == 'curr_img' or elem == 'curr_label':
new_tmp = []
for tmp_ in tmp:
if tmp_.ndim == 2:
tmp_ = tmp_[:, :, np.newaxis]
tmp_ = tmp_.transpose((2, 0, 1))
new_tmp.append(torch.from_numpy(tmp_).int())
else:
tmp_ = tmp_ / 255.
tmp_ -= (0.485, 0.456, 0.406)
tmp_ /= (0.229, 0.224, 0.225)
tmp_ = tmp_.transpose((2, 0, 1))
new_tmp.append(torch.from_numpy(tmp_))
tmp = new_tmp
else:
if tmp.ndim == 2:
tmp = tmp[:, :, np.newaxis]
tmp = tmp.transpose((2, 0, 1))
tmp = torch.from_numpy(tmp).int()
else:
tmp = tmp / 255.
tmp -= (0.485, 0.456, 0.406)
tmp /= (0.229, 0.224, 0.225)
tmp = tmp.transpose((2, 0, 1))
tmp = torch.from_numpy(tmp)
sample[elem] = tmp
return sample
class MultiRestrictSize(object):
def __init__(self,
max_short_edge=None,
max_long_edge=800,
flip=False,
multi_scale=[1.3],
align_corners=True,
max_stride=16):
self.max_short_edge = max_short_edge
self.max_long_edge = max_long_edge
self.multi_scale = multi_scale
self.flip = flip
self.align_corners = align_corners
self.max_stride = max_stride
def __call__(self, sample):
samples = []
image = sample['current_img']
h, w = image.shape[:2]
for scale in self.multi_scale:
# restrict short edge
sc = 1.
if self.max_short_edge is not None:
if h > w:
short_edge = w
else:
short_edge = h
if short_edge > self.max_short_edge:
sc *= float(self.max_short_edge) / short_edge
new_h, new_w = sc * h, sc * w
# restrict long edge
sc = 1.
if self.max_long_edge is not None:
if new_h > new_w:
long_edge = new_h
else:
long_edge = new_w
if long_edge > self.max_long_edge:
sc *= float(self.max_long_edge) / long_edge
new_h, new_w = sc * new_h, sc * new_w
new_h = int(new_h * scale)
new_w = int(new_w * scale)
if self.align_corners:
if (new_h - 1) % self.max_stride != 0:
new_h = int(
np.around((new_h - 1) / self.max_stride) *
self.max_stride + 1)
if (new_w - 1) % self.max_stride != 0:
new_w = int(
np.around((new_w - 1) / self.max_stride) *
self.max_stride + 1)
else:
if new_h % self.max_stride != 0:
new_h = int(
np.around(new_h / self.max_stride) * self.max_stride)
if new_w % self.max_stride != 0:
new_w = int(
np.around(new_w / self.max_stride) * self.max_stride)
if new_h == h and new_w == w:
samples.append(sample)
else:
new_sample = {}
for elem in sample.keys():
if 'meta' in elem:
new_sample[elem] = sample[elem]
continue
tmp = sample[elem]
if 'label' in elem:
new_sample[elem] = sample[elem]
continue
else:
flagval = cv2.INTER_CUBIC
tmp = cv2.resize(tmp,
dsize=(new_w, new_h),
interpolation=flagval)
new_sample[elem] = tmp
samples.append(new_sample)
if self.flip:
now_sample = samples[-1]
new_sample = {}
for elem in now_sample.keys():
if 'meta' in elem:
new_sample[elem] = now_sample[elem].copy()
new_sample[elem]['flip'] = True
continue
tmp = now_sample[elem]
tmp = tmp[:, ::-1].copy()
new_sample[elem] = tmp
samples.append(new_sample)
return samples
class MultiToTensor(object):
def __call__(self, samples):
for idx in range(len(samples)):
sample = samples[idx]
for elem in sample.keys():
if 'meta' in elem:
continue
tmp = sample[elem]
if tmp is None:
continue
if tmp.ndim == 2:
tmp = tmp[:, :, np.newaxis]
tmp = tmp.transpose((2, 0, 1))
samples[idx][elem] = torch.from_numpy(tmp).int()
else:
tmp = tmp / 255.
tmp -= (0.485, 0.456, 0.406)
tmp /= (0.229, 0.224, 0.225)
tmp = tmp.transpose((2, 0, 1))
samples[idx][elem] = torch.from_numpy(tmp)
return samples
|