File size: 6,688 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import math
import torch.nn as nn
from utils.learning import freeze_params


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 BatchNorm=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm(planes)
        self.conv2 = nn.Conv2d(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               dilation=dilation,
                               padding=dilation,
                               bias=False)
        self.bn2 = BatchNorm(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = BatchNorm(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(self, block, layers, output_stride, BatchNorm, freeze_at=0):
        self.inplanes = 64
        super(ResNet, self).__init__()

        if output_stride == 16:
            strides = [1, 2, 2, 1]
            dilations = [1, 1, 1, 2]
        elif output_stride == 8:
            strides = [1, 2, 1, 1]
            dilations = [1, 1, 2, 4]
        else:
            raise NotImplementedError

        # Modules
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = BatchNorm(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block,
                                       64,
                                       layers[0],
                                       stride=strides[0],
                                       dilation=dilations[0],
                                       BatchNorm=BatchNorm)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=strides[1],
                                       dilation=dilations[1],
                                       BatchNorm=BatchNorm)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=strides[2],
                                       dilation=dilations[2],
                                       BatchNorm=BatchNorm)
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm)

        self.stem = [self.conv1, self.bn1]
        self.stages = [self.layer1, self.layer2, self.layer3]

        self._init_weight()
        self.freeze(freeze_at)

    def _make_layer(self,
                    block,
                    planes,
                    blocks,
                    stride=1,
                    dilation=1,
                    BatchNorm=None):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                BatchNorm(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, max(dilation // 2, 1),
                  downsample, BatchNorm))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(self.inplanes,
                      planes,
                      dilation=dilation,
                      BatchNorm=BatchNorm))

        return nn.Sequential(*layers)

    def forward(self, input):
        x = self.conv1(input)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        xs = []

        x = self.layer1(x)
        xs.append(x)  # 4X
        x = self.layer2(x)
        xs.append(x)  # 8X
        x = self.layer3(x)
        xs.append(x)  # 16X
        # Following STMVOS, we drop stage 5.
        xs.append(x)  # 16X

        return xs

    def _init_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def freeze(self, freeze_at):
        if freeze_at >= 1:
            for m in self.stem:
                freeze_params(m)

        for idx, stage in enumerate(self.stages, start=2):
            if freeze_at >= idx:
                freeze_params(stage)


def ResNet50(output_stride, BatchNorm, freeze_at=0):
    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3],
                   output_stride,
                   BatchNorm,
                   freeze_at=freeze_at)
    return model


def ResNet101(output_stride, BatchNorm, freeze_at=0):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3],
                   output_stride,
                   BatchNorm,
                   freeze_at=freeze_at)
    return model


if __name__ == "__main__":
    import torch
    model = ResNet101(BatchNorm=nn.BatchNorm2d, output_stride=8)
    input = torch.rand(1, 3, 512, 512)
    output, low_level_feat = model(input)
    print(output.size())
    print(low_level_feat.size())