File size: 6,698 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from itertools import ifilterfalse
except ImportError: # py3k
from itertools import filterfalse as ifilterfalse
def dice_loss(probas, labels, smooth=1):
C = probas.size(1)
losses = []
for c in list(range(C)):
fg = (labels == c).float()
if fg.sum() == 0:
continue
class_pred = probas[:, c]
p0 = class_pred
g0 = fg
numerator = 2 * torch.sum(p0 * g0) + smooth
denominator = torch.sum(p0) + torch.sum(g0) + smooth
losses.append(1 - ((numerator) / (denominator)))
return mean(losses)
def tversky_loss(probas, labels, alpha=0.5, beta=0.5, epsilon=1e-6):
'''
Tversky loss function.
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
Same as soft dice loss when alpha=beta=0.5.
Same as Jaccord loss when alpha=beta=1.0.
See `Tversky loss function for image segmentation using 3D fully convolutional deep networks`
https://arxiv.org/pdf/1706.05721.pdf
'''
C = probas.size(1)
losses = []
for c in list(range(C)):
fg = (labels == c).float()
if fg.sum() == 0:
continue
class_pred = probas[:, c]
p0 = class_pred
p1 = 1 - class_pred
g0 = fg
g1 = 1 - fg
numerator = torch.sum(p0 * g0)
denominator = numerator + alpha * \
torch.sum(p0*g1) + beta*torch.sum(p1*g0)
losses.append(1 - ((numerator) / (denominator + epsilon)))
return mean(losses)
def flatten_probas(probas, labels, ignore=255):
"""
Flattens predictions in the batch
"""
B, C, H, W = probas.size()
probas = probas.permute(0, 2, 3,
1).contiguous().view(-1, C) # B * H * W, C = P, C
labels = labels.view(-1)
if ignore is None:
return probas, labels
valid = (labels != ignore)
vprobas = probas[valid.view(-1, 1).expand(-1, C)].reshape(-1, C)
# vprobas = probas[torch.nonzero(valid).squeeze()]
vlabels = labels[valid]
return vprobas, vlabels
def isnan(x):
return x != x
def mean(l, ignore_nan=False, empty=0):
"""
nanmean compatible with generators.
"""
l = iter(l)
if ignore_nan:
l = ifilterfalse(isnan, l)
try:
n = 1
acc = next(l)
except StopIteration:
if empty == 'raise':
raise ValueError('Empty mean')
return empty
for n, v in enumerate(l, 2):
acc += v
if n == 1:
return acc
return acc / n
class DiceLoss(nn.Module):
def __init__(self, ignore_index=255):
super(DiceLoss, self).__init__()
self.ignore_index = ignore_index
def forward(self, tmp_dic, label_dic, step=None):
total_loss = []
for idx in range(len(tmp_dic)):
pred = tmp_dic[idx]
label = label_dic[idx]
pred = F.softmax(pred, dim=1)
label = label.view(1, 1, pred.size()[2], pred.size()[3])
loss = dice_loss(
*flatten_probas(pred, label, ignore=self.ignore_index))
total_loss.append(loss.unsqueeze(0))
total_loss = torch.cat(total_loss, dim=0)
return total_loss
class SoftJaccordLoss(nn.Module):
def __init__(self, ignore_index=255):
super(SoftJaccordLoss, self).__init__()
self.ignore_index = ignore_index
def forward(self, tmp_dic, label_dic, step=None):
total_loss = []
for idx in range(len(tmp_dic)):
pred = tmp_dic[idx]
label = label_dic[idx]
pred = F.softmax(pred, dim=1)
label = label.view(1, 1, pred.size()[2], pred.size()[3])
loss = tversky_loss(*flatten_probas(pred,
label,
ignore=self.ignore_index),
alpha=1.0,
beta=1.0)
total_loss.append(loss.unsqueeze(0))
total_loss = torch.cat(total_loss, dim=0)
return total_loss
class CrossEntropyLoss(nn.Module):
def __init__(self,
top_k_percent_pixels=None,
hard_example_mining_step=100000):
super(CrossEntropyLoss, self).__init__()
self.top_k_percent_pixels = top_k_percent_pixels
if top_k_percent_pixels is not None:
assert (top_k_percent_pixels > 0 and top_k_percent_pixels < 1)
self.hard_example_mining_step = hard_example_mining_step + 1e-5
if self.top_k_percent_pixels is None:
self.celoss = nn.CrossEntropyLoss(ignore_index=255,
reduction='mean')
else:
self.celoss = nn.CrossEntropyLoss(ignore_index=255,
reduction='none')
def forward(self, dic_tmp, y, step):
total_loss = []
for i in range(len(dic_tmp)):
pred_logits = dic_tmp[i]
gts = y[i]
if self.top_k_percent_pixels is None:
final_loss = self.celoss(pred_logits, gts)
else:
# Only compute the loss for top k percent pixels.
# First, compute the loss for all pixels. Note we do not put the loss
# to loss_collection and set reduction = None to keep the shape.
num_pixels = float(pred_logits.size(2) * pred_logits.size(3))
pred_logits = pred_logits.view(
-1, pred_logits.size(1),
pred_logits.size(2) * pred_logits.size(3))
gts = gts.view(-1, gts.size(1) * gts.size(2))
pixel_losses = self.celoss(pred_logits, gts)
if self.hard_example_mining_step == 0:
top_k_pixels = int(self.top_k_percent_pixels * num_pixels)
else:
ratio = min(1.0,
step / float(self.hard_example_mining_step))
top_k_pixels = int((ratio * self.top_k_percent_pixels +
(1.0 - ratio)) * num_pixels)
top_k_loss, top_k_indices = torch.topk(pixel_losses,
k=top_k_pixels,
dim=1)
final_loss = torch.mean(top_k_loss)
final_loss = final_loss.unsqueeze(0)
total_loss.append(final_loss)
total_loss = torch.cat(total_loss, dim=0)
return total_loss
|