File size: 29,664 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import os
import time
import json
import datetime as datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import DataLoader
from torchvision import transforms
from dataloaders.train_datasets import DAVIS2017_Train, YOUTUBEVOS_Train, StaticTrain, TEST
import dataloaders.video_transforms as tr
from utils.meters import AverageMeter
from utils.image import label2colormap, masked_image, save_image
from utils.checkpoint import load_network_and_optimizer, load_network, save_network
from utils.learning import adjust_learning_rate, get_trainable_params
from utils.metric import pytorch_iou
from utils.ema import ExponentialMovingAverage, get_param_buffer_for_ema
from networks.models import build_vos_model
from networks.engines import build_engine
class Trainer(object):
def __init__(self, rank, cfg, enable_amp=True):
self.gpu = rank + cfg.DIST_START_GPU
self.gpu_num = cfg.TRAIN_GPUS
self.rank = rank
self.cfg = cfg
self.print_log("Exp {}:".format(cfg.EXP_NAME))
self.print_log(json.dumps(cfg.__dict__, indent=4, sort_keys=True))
print("Use GPU {} for training VOS.".format(self.gpu))
torch.cuda.set_device(self.gpu)
torch.backends.cudnn.benchmark = True if cfg.DATA_RANDOMCROP[
0] == cfg.DATA_RANDOMCROP[
1] and 'swin' not in cfg.MODEL_ENCODER else False
self.print_log('Build VOS model.')
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(self.gpu)
self.model_encoder = self.model.encoder
self.engine = build_engine(
cfg.MODEL_ENGINE,
'train',
aot_model=self.model,
gpu_id=self.gpu,
long_term_mem_gap=cfg.TRAIN_LONG_TERM_MEM_GAP)
if cfg.MODEL_FREEZE_BACKBONE:
for param in self.model_encoder.parameters():
param.requires_grad = False
if cfg.DIST_ENABLE:
dist.init_process_group(backend=cfg.DIST_BACKEND,
init_method=cfg.DIST_URL,
world_size=cfg.TRAIN_GPUS,
rank=rank,
timeout=datetime.timedelta(seconds=300))
self.model.encoder = nn.SyncBatchNorm.convert_sync_batchnorm(
self.model.encoder).cuda(self.gpu)
self.dist_engine = torch.nn.parallel.DistributedDataParallel(
self.engine,
device_ids=[self.gpu],
output_device=self.gpu,
find_unused_parameters=True,
broadcast_buffers=False)
else:
self.dist_engine = self.engine
self.use_frozen_bn = False
if 'swin' in cfg.MODEL_ENCODER:
self.print_log('Use LN in Encoder!')
elif not cfg.MODEL_FREEZE_BN:
if cfg.DIST_ENABLE:
self.print_log('Use Sync BN in Encoder!')
else:
self.print_log('Use BN in Encoder!')
else:
self.use_frozen_bn = True
self.print_log('Use Frozen BN in Encoder!')
if self.rank == 0:
try:
total_steps = float(cfg.TRAIN_TOTAL_STEPS)
ema_decay = 1. - 1. / (total_steps * cfg.TRAIN_EMA_RATIO)
self.ema_params = get_param_buffer_for_ema(
self.model, update_buffer=(not cfg.MODEL_FREEZE_BN))
self.ema = ExponentialMovingAverage(self.ema_params,
decay=ema_decay)
self.ema_dir = cfg.DIR_EMA_CKPT
except Exception as inst:
self.print_log(inst)
self.print_log('Error: failed to create EMA model!')
self.print_log('Build optimizer.')
trainable_params = get_trainable_params(
model=self.dist_engine,
base_lr=cfg.TRAIN_LR,
use_frozen_bn=self.use_frozen_bn,
weight_decay=cfg.TRAIN_WEIGHT_DECAY,
exclusive_wd_dict=cfg.TRAIN_WEIGHT_DECAY_EXCLUSIVE,
no_wd_keys=cfg.TRAIN_WEIGHT_DECAY_EXEMPTION)
if cfg.TRAIN_OPT == 'sgd':
self.optimizer = optim.SGD(trainable_params,
lr=cfg.TRAIN_LR,
momentum=cfg.TRAIN_SGD_MOMENTUM,
nesterov=True)
else:
self.optimizer = optim.AdamW(trainable_params,
lr=cfg.TRAIN_LR,
weight_decay=cfg.TRAIN_WEIGHT_DECAY)
self.enable_amp = enable_amp
if enable_amp:
self.scaler = torch.cuda.amp.GradScaler()
else:
self.scaler = None
self.prepare_dataset()
self.process_pretrained_model()
if cfg.TRAIN_TBLOG and self.rank == 0:
from tensorboardX import SummaryWriter
self.tblogger = SummaryWriter(cfg.DIR_TB_LOG)
def process_pretrained_model(self):
cfg = self.cfg
self.step = cfg.TRAIN_START_STEP
self.epoch = 0
if cfg.TRAIN_AUTO_RESUME:
ckpts = os.listdir(cfg.DIR_CKPT)
if len(ckpts) > 0:
ckpts = list(
map(lambda x: int(x.split('_')[-1].split('.')[0]), ckpts))
ckpt = np.sort(ckpts)[-1]
cfg.TRAIN_RESUME = True
cfg.TRAIN_RESUME_CKPT = ckpt
cfg.TRAIN_RESUME_STEP = ckpt
else:
cfg.TRAIN_RESUME = False
if cfg.TRAIN_RESUME:
if self.rank == 0:
try:
try:
ema_ckpt_dir = os.path.join(
self.ema_dir,
'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
ema_model, removed_dict = load_network(
self.model, ema_ckpt_dir, self.gpu)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup EMA checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(
cfg.EXP_NAME, cfg.STAGE_NAME)
DIR_EMA_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt')
ema_ckpt_dir = os.path.join(
DIR_EMA_CKPT,
'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
ema_model, removed_dict = load_network(
self.model, ema_ckpt_dir, self.gpu)
if len(removed_dict) > 0:
self.print_log(
'Remove {} from EMA model.'.format(removed_dict))
ema_decay = self.ema.decay
del (self.ema)
ema_params = get_param_buffer_for_ema(
ema_model, update_buffer=(not cfg.MODEL_FREEZE_BN))
self.ema = ExponentialMovingAverage(ema_params,
decay=ema_decay)
self.ema.num_updates = cfg.TRAIN_RESUME_CKPT
except Exception as inst:
self.print_log(inst)
self.print_log('Error: EMA model not found!')
try:
resume_ckpt = os.path.join(
cfg.DIR_CKPT, 'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
self.model, self.optimizer, removed_dict = load_network_and_optimizer(
self.model,
self.optimizer,
resume_ckpt,
self.gpu,
scaler=self.scaler)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(cfg.EXP_NAME,
cfg.STAGE_NAME)
DIR_CKPT = os.path.join(DIR_RESULT, 'ckpt')
resume_ckpt = os.path.join(
DIR_CKPT, 'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT))
self.model, self.optimizer, removed_dict = load_network_and_optimizer(
self.model,
self.optimizer,
resume_ckpt,
self.gpu,
scaler=self.scaler)
if len(removed_dict) > 0:
self.print_log(
'Remove {} from checkpoint.'.format(removed_dict))
self.step = cfg.TRAIN_RESUME_STEP
if cfg.TRAIN_TOTAL_STEPS <= self.step:
self.print_log("Your training has finished!")
exit()
self.epoch = int(np.ceil(self.step / len(self.train_loader)))
self.print_log('Resume from step {}'.format(self.step))
elif cfg.PRETRAIN:
if cfg.PRETRAIN_FULL:
try:
self.model, removed_dict = load_network(
self.model, cfg.PRETRAIN_MODEL, self.gpu)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup EMA checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(
cfg.EXP_NAME, cfg.STAGE_NAME)
DIR_EMA_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt')
PRETRAIN_MODEL = os.path.join(
DIR_EMA_CKPT,
cfg.PRETRAIN_MODEL.split('/')[-1])
self.model, removed_dict = load_network(
self.model, PRETRAIN_MODEL, self.gpu)
if len(removed_dict) > 0:
self.print_log('Remove {} from pretrained model.'.format(
removed_dict))
self.print_log('Load pretrained VOS model from {}.'.format(
cfg.PRETRAIN_MODEL))
else:
model_encoder, removed_dict = load_network(
self.model_encoder, cfg.PRETRAIN_MODEL, self.gpu)
if len(removed_dict) > 0:
self.print_log('Remove {} from pretrained model.'.format(
removed_dict))
self.print_log(
'Load pretrained backbone model from {}.'.format(
cfg.PRETRAIN_MODEL))
def prepare_dataset(self):
cfg = self.cfg
self.enable_prev_frame = cfg.TRAIN_ENABLE_PREV_FRAME
self.print_log('Process dataset...')
if cfg.TRAIN_AUG_TYPE == 'v1':
composed_transforms = transforms.Compose([
tr.RandomScale(cfg.DATA_MIN_SCALE_FACTOR,
cfg.DATA_MAX_SCALE_FACTOR,
cfg.DATA_SHORT_EDGE_LEN),
tr.BalancedRandomCrop(cfg.DATA_RANDOMCROP,
max_obj_num=cfg.MODEL_MAX_OBJ_NUM),
tr.RandomHorizontalFlip(cfg.DATA_RANDOMFLIP),
tr.Resize(cfg.DATA_RANDOMCROP, use_padding=True),
tr.ToTensor()
])
elif cfg.TRAIN_AUG_TYPE == 'v2':
composed_transforms = transforms.Compose([
tr.RandomScale(cfg.DATA_MIN_SCALE_FACTOR,
cfg.DATA_MAX_SCALE_FACTOR,
cfg.DATA_SHORT_EDGE_LEN),
tr.BalancedRandomCrop(cfg.DATA_RANDOMCROP,
max_obj_num=cfg.MODEL_MAX_OBJ_NUM),
tr.RandomColorJitter(),
tr.RandomGrayScale(),
tr.RandomGaussianBlur(),
tr.RandomHorizontalFlip(cfg.DATA_RANDOMFLIP),
tr.Resize(cfg.DATA_RANDOMCROP, use_padding=True),
tr.ToTensor()
])
else:
assert NotImplementedError
train_datasets = []
if 'static' in cfg.DATASETS:
pretrain_vos_dataset = StaticTrain(
cfg.DIR_STATIC,
cfg.DATA_RANDOMCROP,
seq_len=cfg.DATA_SEQ_LEN,
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB,
max_obj_n=cfg.MODEL_MAX_OBJ_NUM,
aug_type=cfg.TRAIN_AUG_TYPE)
train_datasets.append(pretrain_vos_dataset)
self.enable_prev_frame = False
if 'davis2017' in cfg.DATASETS:
train_davis_dataset = DAVIS2017_Train(
root=cfg.DIR_DAVIS,
full_resolution=cfg.TRAIN_DATASET_FULL_RESOLUTION,
transform=composed_transforms,
repeat_time=cfg.DATA_DAVIS_REPEAT,
seq_len=cfg.DATA_SEQ_LEN,
rand_gap=cfg.DATA_RANDOM_GAP_DAVIS,
rand_reverse=cfg.DATA_RANDOM_REVERSE_SEQ,
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB,
enable_prev_frame=self.enable_prev_frame,
max_obj_n=cfg.MODEL_MAX_OBJ_NUM)
train_datasets.append(train_davis_dataset)
if 'youtubevos' in cfg.DATASETS:
train_ytb_dataset = YOUTUBEVOS_Train(
root=cfg.DIR_YTB,
transform=composed_transforms,
seq_len=cfg.DATA_SEQ_LEN,
rand_gap=cfg.DATA_RANDOM_GAP_YTB,
rand_reverse=cfg.DATA_RANDOM_REVERSE_SEQ,
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB,
enable_prev_frame=self.enable_prev_frame,
max_obj_n=cfg.MODEL_MAX_OBJ_NUM)
train_datasets.append(train_ytb_dataset)
if 'test' in cfg.DATASETS:
test_dataset = TEST(transform=composed_transforms,
seq_len=cfg.DATA_SEQ_LEN)
train_datasets.append(test_dataset)
if len(train_datasets) > 1:
train_dataset = torch.utils.data.ConcatDataset(train_datasets)
elif len(train_datasets) == 1:
train_dataset = train_datasets[0]
else:
self.print_log('No dataset!')
exit(0)
self.train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset) if self.cfg.DIST_ENABLE else None
self.train_loader = DataLoader(train_dataset,
batch_size=int(cfg.TRAIN_BATCH_SIZE /
cfg.TRAIN_GPUS),
shuffle=False if self.cfg.DIST_ENABLE else True,
num_workers=cfg.DATA_WORKERS,
pin_memory=True,
sampler=self.train_sampler,
drop_last=True,
prefetch_factor=4)
self.print_log('Done!')
def sequential_training(self):
cfg = self.cfg
if self.enable_prev_frame:
frame_names = ['Ref', 'Prev']
else:
frame_names = ['Ref(Prev)']
for i in range(cfg.DATA_SEQ_LEN - 1):
frame_names.append('Curr{}'.format(i + 1))
seq_len = len(frame_names)
running_losses = []
running_ious = []
for _ in range(seq_len):
running_losses.append(AverageMeter())
running_ious.append(AverageMeter())
batch_time = AverageMeter()
avg_obj = AverageMeter()
optimizer = self.optimizer
model = self.dist_engine
train_sampler = self.train_sampler
train_loader = self.train_loader
step = self.step
epoch = self.epoch
max_itr = cfg.TRAIN_TOTAL_STEPS
start_seq_training_step = int(cfg.TRAIN_SEQ_TRAINING_START_RATIO *
max_itr)
use_prev_prob = cfg.MODEL_USE_PREV_PROB
self.print_log('Start training:')
model.train()
while step < cfg.TRAIN_TOTAL_STEPS:
if self.cfg.DIST_ENABLE:
train_sampler.set_epoch(epoch)
epoch += 1
last_time = time.time()
for frame_idx, sample in enumerate(train_loader):
if step > cfg.TRAIN_TOTAL_STEPS:
break
if step % cfg.TRAIN_TBLOG_STEP == 0 and self.rank == 0 and cfg.TRAIN_TBLOG:
tf_board = True
else:
tf_board = False
if step >= start_seq_training_step:
use_prev_pred = True
freeze_params = cfg.TRAIN_SEQ_TRAINING_FREEZE_PARAMS
else:
use_prev_pred = False
freeze_params = []
if step % cfg.TRAIN_LR_UPDATE_STEP == 0:
now_lr = adjust_learning_rate(
optimizer=optimizer,
base_lr=cfg.TRAIN_LR,
p=cfg.TRAIN_LR_POWER,
itr=step,
max_itr=max_itr,
restart=cfg.TRAIN_LR_RESTART,
warm_up_steps=cfg.TRAIN_LR_WARM_UP_RATIO * max_itr,
is_cosine_decay=cfg.TRAIN_LR_COSINE_DECAY,
min_lr=cfg.TRAIN_LR_MIN,
encoder_lr_ratio=cfg.TRAIN_LR_ENCODER_RATIO,
freeze_params=freeze_params)
ref_imgs = sample['ref_img'] # batch_size * 3 * h * w
prev_imgs = sample['prev_img']
curr_imgs = sample['curr_img']
ref_labels = sample['ref_label'] # batch_size * 1 * h * w
prev_labels = sample['prev_label']
curr_labels = sample['curr_label']
obj_nums = sample['meta']['obj_num']
bs, _, h, w = curr_imgs[0].size()
ref_imgs = ref_imgs.cuda(self.gpu, non_blocking=True)
prev_imgs = prev_imgs.cuda(self.gpu, non_blocking=True)
curr_imgs = [
curr_img.cuda(self.gpu, non_blocking=True)
for curr_img in curr_imgs
]
ref_labels = ref_labels.cuda(self.gpu, non_blocking=True)
prev_labels = prev_labels.cuda(self.gpu, non_blocking=True)
curr_labels = [
curr_label.cuda(self.gpu, non_blocking=True)
for curr_label in curr_labels
]
obj_nums = list(obj_nums)
obj_nums = [int(obj_num) for obj_num in obj_nums]
batch_size = ref_imgs.size(0)
all_frames = torch.cat([ref_imgs, prev_imgs] + curr_imgs,
dim=0)
all_labels = torch.cat([ref_labels, prev_labels] + curr_labels,
dim=0)
self.engine.restart_engine(batch_size, True)
optimizer.zero_grad(set_to_none=True)
if self.enable_amp:
with torch.cuda.amp.autocast(enabled=True):
loss, all_pred, all_loss, boards = model(
all_frames,
all_labels,
batch_size,
use_prev_pred=use_prev_pred,
obj_nums=obj_nums,
step=step,
tf_board=tf_board,
enable_prev_frame=self.enable_prev_frame,
use_prev_prob=use_prev_prob)
loss = torch.mean(loss)
start = time.time()
self.scaler.scale(loss).backward()
end = time.time()
print(end-start)
self.scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(),
cfg.TRAIN_CLIP_GRAD_NORM)
self.scaler.step(optimizer)
self.scaler.update()
else:
loss, all_pred, all_loss, boards = model(
all_frames,
all_labels,
ref_imgs.size(0),
use_prev_pred=use_prev_pred,
obj_nums=obj_nums,
step=step,
tf_board=tf_board,
enable_prev_frame=self.enable_prev_frame,
use_prev_prob=use_prev_prob)
loss = torch.mean(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(),
cfg.TRAIN_CLIP_GRAD_NORM)
loss.backward()
optimizer.step()
for idx in range(seq_len):
now_pred = all_pred[idx].detach()
now_label = all_labels[idx * bs:(idx + 1) * bs].detach()
now_loss = torch.mean(all_loss[idx].detach())
now_iou = pytorch_iou(now_pred.unsqueeze(1), now_label,
obj_nums) * 100
if self.cfg.DIST_ENABLE:
dist.all_reduce(now_loss)
dist.all_reduce(now_iou)
now_loss /= self.gpu_num
now_iou /= self.gpu_num
if self.rank == 0:
running_losses[idx].update(now_loss.item())
running_ious[idx].update(now_iou.item())
if self.rank == 0:
self.ema.update(self.ema_params)
avg_obj.update(sum(obj_nums) / float(len(obj_nums)))
curr_time = time.time()
batch_time.update(curr_time - last_time)
last_time = curr_time
if step % cfg.TRAIN_TBLOG_STEP == 0:
all_f = [ref_imgs, prev_imgs] + curr_imgs
self.process_log(ref_imgs, all_f[-2], all_f[-1],
ref_labels, all_pred[-2], now_label,
now_pred, boards, running_losses,
running_ious, now_lr, step)
if step % cfg.TRAIN_LOG_STEP == 0:
strs = 'I:{}, LR:{:.5f}, T:{:.1f}({:.1f})s, Obj:{:.1f}({:.1f})'.format(
step, now_lr, batch_time.val,
batch_time.moving_avg, avg_obj.val,
avg_obj.moving_avg)
batch_time.reset()
avg_obj.reset()
for idx in range(seq_len):
strs += ', {}: L {:.3f}({:.3f}) IoU {:.1f}({:.1f})%'.format(
frame_names[idx], running_losses[idx].val,
running_losses[idx].moving_avg,
running_ious[idx].val,
running_ious[idx].moving_avg)
running_losses[idx].reset()
running_ious[idx].reset()
self.print_log(strs)
step += 1
if step % cfg.TRAIN_SAVE_STEP == 0 and self.rank == 0:
max_mem = torch.cuda.max_memory_allocated(
device=self.gpu) / (1024.**3)
ETA = str(
datetime.timedelta(
seconds=int(batch_time.moving_avg *
(cfg.TRAIN_TOTAL_STEPS - step))))
self.print_log('ETA: {}, Max Mem: {:.2f}G.'.format(
ETA, max_mem))
self.print_log('Save CKPT (Step {}).'.format(step))
save_network(self.model,
optimizer,
step,
cfg.DIR_CKPT,
cfg.TRAIN_MAX_KEEP_CKPT,
backup_dir='./backup/{}/{}/ckpt'.format(
cfg.EXP_NAME, cfg.STAGE_NAME),
scaler=self.scaler)
try:
torch.cuda.empty_cache()
# First save original parameters before replacing with EMA version
self.ema.store(self.ema_params)
# Copy EMA parameters to model
self.ema.copy_to(self.ema_params)
# Save EMA model
save_network(
self.model,
optimizer,
step,
self.ema_dir,
cfg.TRAIN_MAX_KEEP_CKPT,
backup_dir='./backup/{}/{}/ema_ckpt'.format(
cfg.EXP_NAME, cfg.STAGE_NAME),
scaler=self.scaler)
# Restore original parameters to resume training later
self.ema.restore(self.ema_params)
except Exception as inst:
self.print_log(inst)
self.print_log('Error: failed to save EMA model!')
self.print_log('Stop training!')
def print_log(self, string):
if self.rank == 0:
print(string)
def process_log(self, ref_imgs, prev_imgs, curr_imgs, ref_labels,
prev_labels, curr_labels, curr_pred, boards,
running_losses, running_ious, now_lr, step):
cfg = self.cfg
mean = np.array([[[0.485]], [[0.456]], [[0.406]]])
sigma = np.array([[[0.229]], [[0.224]], [[0.225]]])
show_ref_img, show_prev_img, show_curr_img = [
img.cpu().numpy()[0] * sigma + mean
for img in [ref_imgs, prev_imgs, curr_imgs]
]
show_gt, show_prev_gt, show_ref_gt, show_preds_s = [
label.cpu()[0].squeeze(0).numpy()
for label in [curr_labels, prev_labels, ref_labels, curr_pred]
]
show_gtf, show_prev_gtf, show_ref_gtf, show_preds_sf = [
label2colormap(label).transpose((2, 0, 1))
for label in [show_gt, show_prev_gt, show_ref_gt, show_preds_s]
]
if cfg.TRAIN_IMG_LOG or cfg.TRAIN_TBLOG:
show_ref_img = masked_image(show_ref_img, show_ref_gtf,
show_ref_gt)
if cfg.TRAIN_IMG_LOG:
save_image(
show_ref_img,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_ref_img.jpeg' % (step)))
show_prev_img = masked_image(show_prev_img, show_prev_gtf,
show_prev_gt)
if cfg.TRAIN_IMG_LOG:
save_image(
show_prev_img,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_prev_img.jpeg' % (step)))
show_img_pred = masked_image(show_curr_img, show_preds_sf,
show_preds_s)
if cfg.TRAIN_IMG_LOG:
save_image(
show_img_pred,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_prediction.jpeg' % (step)))
show_curr_img = masked_image(show_curr_img, show_gtf, show_gt)
if cfg.TRAIN_IMG_LOG:
save_image(
show_curr_img,
os.path.join(cfg.DIR_IMG_LOG,
'%06d_groundtruth.jpeg' % (step)))
if cfg.TRAIN_TBLOG:
for seq_step, running_loss, running_iou in zip(
range(len(running_losses)), running_losses,
running_ious):
self.tblogger.add_scalar('S{}/Loss'.format(seq_step),
running_loss.avg, step)
self.tblogger.add_scalar('S{}/IoU'.format(seq_step),
running_iou.avg, step)
self.tblogger.add_scalar('LR', now_lr, step)
self.tblogger.add_image('Ref/Image', show_ref_img, step)
self.tblogger.add_image('Ref/GT', show_ref_gtf, step)
self.tblogger.add_image('Prev/Image', show_prev_img, step)
self.tblogger.add_image('Prev/GT', show_prev_gtf, step)
self.tblogger.add_image('Curr/Image_GT', show_curr_img, step)
self.tblogger.add_image('Curr/Image_Pred', show_img_pred, step)
self.tblogger.add_image('Curr/Mask_GT', show_gtf, step)
self.tblogger.add_image('Curr/Mask_Pred', show_preds_sf, step)
for key in boards['image'].keys():
tmp = boards['image'][key].cpu().numpy()
self.tblogger.add_image('S{}/' + key, tmp, step)
for key in boards['scalar'].keys():
tmp = boards['scalar'][key].cpu().numpy()
self.tblogger.add_scalar('S{}/' + key, tmp, step)
self.tblogger.flush()
del (boards)
|