File size: 25,167 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np

from utils.math import generate_permute_matrix
from utils.image import one_hot_mask

from networks.layers.basic import seq_to_2d


class AOTEngine(nn.Module):
    def __init__(self,
                 aot_model,
                 gpu_id=0,
                 long_term_mem_gap=9999,
                 short_term_mem_skip=1,
                 max_len_long_term=9999):
        super().__init__()

        self.cfg = aot_model.cfg
        self.align_corners = aot_model.cfg.MODEL_ALIGN_CORNERS
        self.AOT = aot_model

        self.max_obj_num = aot_model.max_obj_num
        self.gpu_id = gpu_id
        self.long_term_mem_gap = long_term_mem_gap
        self.short_term_mem_skip = short_term_mem_skip
        self.max_len_long_term = max_len_long_term
        self.losses = None

        self.restart_engine()

    def forward(self,
                all_frames,
                all_masks,
                batch_size,
                obj_nums,
                step=0,
                tf_board=False,
                use_prev_pred=False,
                enable_prev_frame=False,
                use_prev_prob=False):  # only used for training
        if self.losses is None:
            self._init_losses()

        self.freeze_id = True if use_prev_pred else False
        aux_weight = self.aux_weight * max(self.aux_step - step,
                                           0.) / self.aux_step

        self.offline_encoder(all_frames, all_masks)

        self.add_reference_frame(frame_step=0, obj_nums=obj_nums)

        grad_state = torch.no_grad if aux_weight == 0 else torch.enable_grad
        with grad_state():
            ref_aux_loss, ref_aux_mask = self.generate_loss_mask(
                self.offline_masks[self.frame_step], step)

        aux_losses = [ref_aux_loss]
        aux_masks = [ref_aux_mask]

        curr_losses, curr_masks = [], []
        if enable_prev_frame:
            self.set_prev_frame(frame_step=1)
            with grad_state():
                prev_aux_loss, prev_aux_mask = self.generate_loss_mask(
                    self.offline_masks[self.frame_step], step)
            aux_losses.append(prev_aux_loss)
            aux_masks.append(prev_aux_mask)
        else:
            self.match_propogate_one_frame()
            curr_loss, curr_mask, curr_prob = self.generate_loss_mask(
                self.offline_masks[self.frame_step], step, return_prob=True)
            self.update_short_term_memory(
                curr_mask if not use_prev_prob else curr_prob,
                None if use_prev_pred else self.assign_identity(
                    self.offline_one_hot_masks[self.frame_step]))
            curr_losses.append(curr_loss)
            curr_masks.append(curr_mask)

        self.match_propogate_one_frame()
        curr_loss, curr_mask, curr_prob = self.generate_loss_mask(
            self.offline_masks[self.frame_step], step, return_prob=True)
        curr_losses.append(curr_loss)
        curr_masks.append(curr_mask)
        for _ in range(self.total_offline_frame_num - 3):
            self.update_short_term_memory(
                curr_mask if not use_prev_prob else curr_prob,
                None if use_prev_pred else self.assign_identity(
                    self.offline_one_hot_masks[self.frame_step]))
            self.match_propogate_one_frame()
            curr_loss, curr_mask, curr_prob = self.generate_loss_mask(
                self.offline_masks[self.frame_step], step, return_prob=True)
            curr_losses.append(curr_loss)
            curr_masks.append(curr_mask)

        aux_loss = torch.cat(aux_losses, dim=0).mean(dim=0)
        pred_loss = torch.cat(curr_losses, dim=0).mean(dim=0)

        loss = aux_weight * aux_loss + pred_loss

        all_pred_mask = aux_masks + curr_masks

        all_frame_loss = aux_losses + curr_losses

        boards = {'image': {}, 'scalar': {}}

        return loss, all_pred_mask, all_frame_loss, boards

    def _init_losses(self):
        cfg = self.cfg

        from networks.layers.loss import CrossEntropyLoss, SoftJaccordLoss
        bce_loss = CrossEntropyLoss(
            cfg.TRAIN_TOP_K_PERCENT_PIXELS,
            cfg.TRAIN_HARD_MINING_RATIO * cfg.TRAIN_TOTAL_STEPS)
        iou_loss = SoftJaccordLoss()

        losses = [bce_loss, iou_loss]
        loss_weights = [0.5, 0.5]

        self.losses = nn.ModuleList(losses)
        self.loss_weights = loss_weights
        self.aux_weight = cfg.TRAIN_AUX_LOSS_WEIGHT
        self.aux_step = cfg.TRAIN_TOTAL_STEPS * cfg.TRAIN_AUX_LOSS_RATIO + 1e-5

    def encode_one_img_mask(self, img=None, mask=None, frame_step=-1):
        if frame_step == -1:
            frame_step = self.frame_step

        if self.enable_offline_enc:
            curr_enc_embs = self.offline_enc_embs[frame_step]
        elif img is None:
            curr_enc_embs = None
        else:
            curr_enc_embs = self.AOT.encode_image(img)

        if mask is not None:
            curr_one_hot_mask = one_hot_mask(mask, self.max_obj_num)
        elif self.enable_offline_enc:
            curr_one_hot_mask = self.offline_one_hot_masks[frame_step]
        else:
            curr_one_hot_mask = None

        return curr_enc_embs, curr_one_hot_mask

    def offline_encoder(self, all_frames, all_masks=None):
        self.enable_offline_enc = True
        self.offline_frames = all_frames.size(0) // self.batch_size

        # extract backbone features
        self.offline_enc_embs = self.split_frames(
            self.AOT.encode_image(all_frames), self.batch_size)
        self.total_offline_frame_num = len(self.offline_enc_embs)

        if all_masks is not None:
            # extract mask embeddings
            offline_one_hot_masks = one_hot_mask(all_masks, self.max_obj_num)
            self.offline_masks = list(
                torch.split(all_masks, self.batch_size, dim=0))
            self.offline_one_hot_masks = list(
                torch.split(offline_one_hot_masks, self.batch_size, dim=0))

        if self.input_size_2d is None:
            self.update_size(all_frames.size()[2:],
                             self.offline_enc_embs[0][-1].size()[2:])

    def assign_identity(self, one_hot_mask):
        if self.enable_id_shuffle:
            one_hot_mask = torch.einsum('bohw,bot->bthw', one_hot_mask,
                                        self.id_shuffle_matrix)

        id_emb = self.AOT.get_id_emb(one_hot_mask).view(
            self.batch_size, -1, self.enc_hw).permute(2, 0, 1)

        if self.training and self.freeze_id:
            id_emb = id_emb.detach()

        return id_emb

    def split_frames(self, xs, chunk_size):
        new_xs = []
        for x in xs:
            all_x = list(torch.split(x, chunk_size, dim=0))
            new_xs.append(all_x)
        return list(zip(*new_xs))

    def add_reference_frame(self,
                            img=None,
                            mask=None,
                            frame_step=-1,
                            obj_nums=None,
                            img_embs=None):
        if self.obj_nums is None and obj_nums is None:
            print('No objects for reference frame!')
            exit()
        elif obj_nums is not None:
            self.obj_nums = obj_nums

        if frame_step == -1:
            frame_step = self.frame_step

        if img_embs is None:
            curr_enc_embs, curr_one_hot_mask = self.encode_one_img_mask(
                img, mask, frame_step)
        else:
            _, curr_one_hot_mask = self.encode_one_img_mask(
                None, mask, frame_step)
            curr_enc_embs = img_embs

        if curr_enc_embs is None:
            print('No image for reference frame!')
            exit()

        if curr_one_hot_mask is None:
            print('No mask for reference frame!')
            exit()

        if self.input_size_2d is None:
            self.update_size(img.size()[2:], curr_enc_embs[-1].size()[2:])

        self.curr_enc_embs = curr_enc_embs
        self.curr_one_hot_mask = curr_one_hot_mask

        if self.pos_emb is None:
            self.pos_emb = self.AOT.get_pos_emb(curr_enc_embs[-1]).expand(
                self.batch_size, -1, -1,
                -1).view(self.batch_size, -1, self.enc_hw).permute(2, 0, 1)

        curr_id_emb = self.assign_identity(curr_one_hot_mask)
        self.curr_id_embs = curr_id_emb

        # self matching and propagation
        self.curr_lstt_output = self.AOT.LSTT_forward(curr_enc_embs,
                                                      None,
                                                      None,
                                                      curr_id_emb,
                                                      pos_emb=self.pos_emb,
                                                      size_2d=self.enc_size_2d)

        lstt_embs, lstt_curr_memories, lstt_long_memories, lstt_short_memories = self.curr_lstt_output

        if self.long_term_memories is None:
            self.long_term_memories = lstt_long_memories
        else:
            self.update_long_term_memory(lstt_long_memories)

        self.last_mem_step = self.frame_step

        self.short_term_memories_list = [lstt_short_memories]
        self.short_term_memories = lstt_short_memories

    def set_prev_frame(self, img=None, mask=None, frame_step=1):
        self.frame_step = frame_step
        curr_enc_embs, curr_one_hot_mask = self.encode_one_img_mask(
            img, mask, frame_step)

        if curr_enc_embs is None:
            print('No image for previous frame!')
            exit()

        if curr_one_hot_mask is None:
            print('No mask for previous frame!')
            exit()

        self.curr_enc_embs = curr_enc_embs
        self.curr_one_hot_mask = curr_one_hot_mask

        curr_id_emb = self.assign_identity(curr_one_hot_mask)
        self.curr_id_embs = curr_id_emb

        # self matching and propagation
        self.curr_lstt_output = self.AOT.LSTT_forward(curr_enc_embs,
                                                      None,
                                                      None,
                                                      curr_id_emb,
                                                      pos_emb=self.pos_emb,
                                                      size_2d=self.enc_size_2d)

        lstt_embs, lstt_curr_memories, lstt_long_memories, lstt_short_memories = self.curr_lstt_output

        if self.long_term_memories is None:
            self.long_term_memories = lstt_long_memories
        else:
            self.update_long_term_memory(lstt_long_memories)
        self.last_mem_step = frame_step

        self.short_term_memories_list = [lstt_short_memories]
        self.short_term_memories = lstt_short_memories

    def update_long_term_memory(self, new_long_term_memories):
        TOKEN_NUM = new_long_term_memories[0][0].shape[0]
        if self.long_term_memories is None:
            self.long_term_memories = new_long_term_memories
        updated_long_term_memories = []
        for new_long_term_memory, last_long_term_memory in zip(
                new_long_term_memories, self.long_term_memories):
            updated_e = []
            for new_e, last_e in zip(new_long_term_memory,
                                     last_long_term_memory):
                if new_e is None or last_e is None:
                    updated_e.append(None)
                else:
                    if last_e.shape[0] >= self.max_len_long_term * TOKEN_NUM:
                        last_e = last_e[:(self.max_len_long_term - 1) * TOKEN_NUM]
                    updated_e.append(torch.cat([new_e, last_e], dim=0))
            updated_long_term_memories.append(updated_e)
        self.long_term_memories = updated_long_term_memories

    def update_short_term_memory(self, curr_mask, curr_id_emb=None, skip_long_term_update=False):
        if curr_id_emb is None:
            if len(curr_mask.size()) == 3 or curr_mask.size()[0] == 1:
                curr_one_hot_mask = one_hot_mask(curr_mask, self.max_obj_num)
            else:
                curr_one_hot_mask = curr_mask
            curr_id_emb = self.assign_identity(curr_one_hot_mask)

        lstt_curr_memories = self.curr_lstt_output[1]
        lstt_curr_memories_2d = []
        for layer_idx in range(len(lstt_curr_memories)):
            curr_k, curr_v = lstt_curr_memories[layer_idx][
                0], lstt_curr_memories[layer_idx][1]
            curr_k, curr_v = self.AOT.LSTT.layers[layer_idx].fuse_key_value_id(
                curr_k, curr_v, curr_id_emb)
            lstt_curr_memories[layer_idx][0], lstt_curr_memories[layer_idx][
                1] = curr_k, curr_v
            lstt_curr_memories_2d.append([
                seq_to_2d(lstt_curr_memories[layer_idx][0], self.enc_size_2d),
                seq_to_2d(lstt_curr_memories[layer_idx][1], self.enc_size_2d)
            ])

        self.short_term_memories_list.append(lstt_curr_memories_2d)
        self.short_term_memories_list = self.short_term_memories_list[
            -self.short_term_mem_skip:]
        self.short_term_memories = self.short_term_memories_list[0]

        if self.frame_step - self.last_mem_step >= self.long_term_mem_gap:
            # skip the update of long-term memory or not
            if not skip_long_term_update: 
                self.update_long_term_memory(lstt_curr_memories)
            self.last_mem_step = self.frame_step

    def match_propogate_one_frame(self, img=None, img_embs=None):
        self.frame_step += 1
        if img_embs is None:
            curr_enc_embs, _ = self.encode_one_img_mask(
                img, None, self.frame_step)
        else:
            curr_enc_embs = img_embs
        self.curr_enc_embs = curr_enc_embs

        self.curr_lstt_output = self.AOT.LSTT_forward(curr_enc_embs,
                                                      self.long_term_memories,
                                                      self.short_term_memories,
                                                      None,
                                                      pos_emb=self.pos_emb,
                                                      size_2d=self.enc_size_2d)

    def decode_current_logits(self, output_size=None):
        curr_enc_embs = self.curr_enc_embs
        curr_lstt_embs = self.curr_lstt_output[0]

        pred_id_logits = self.AOT.decode_id_logits(curr_lstt_embs,
                                                   curr_enc_embs)

        if self.enable_id_shuffle:  # reverse shuffle
            pred_id_logits = torch.einsum('bohw,bto->bthw', pred_id_logits,
                                          self.id_shuffle_matrix)

        # remove unused identities
        for batch_idx, obj_num in enumerate(self.obj_nums):
            pred_id_logits[batch_idx, (obj_num+1):] = - \
                1e+10 if pred_id_logits.dtype == torch.float32 else -1e+4

        self.pred_id_logits = pred_id_logits

        if output_size is not None:
            pred_id_logits = F.interpolate(pred_id_logits,
                                           size=output_size,
                                           mode="bilinear",
                                           align_corners=self.align_corners)

        return pred_id_logits

    def predict_current_mask(self, output_size=None, return_prob=False):
        if output_size is None:
            output_size = self.input_size_2d

        pred_id_logits = F.interpolate(self.pred_id_logits,
                                       size=output_size,
                                       mode="bilinear",
                                       align_corners=self.align_corners)
        pred_mask = torch.argmax(pred_id_logits, dim=1)

        if not return_prob:
            return pred_mask
        else:
            pred_prob = torch.softmax(pred_id_logits, dim=1)
            return pred_mask, pred_prob

    def calculate_current_loss(self, gt_mask, step):
        pred_id_logits = self.pred_id_logits

        pred_id_logits = F.interpolate(pred_id_logits,
                                       size=gt_mask.size()[-2:],
                                       mode="bilinear",
                                       align_corners=self.align_corners)

        label_list = []
        logit_list = []
        for batch_idx, obj_num in enumerate(self.obj_nums):
            now_label = gt_mask[batch_idx].long()
            now_logit = pred_id_logits[batch_idx, :(obj_num + 1)].unsqueeze(0)
            label_list.append(now_label.long())
            logit_list.append(now_logit)

        total_loss = 0
        for loss, loss_weight in zip(self.losses, self.loss_weights):
            total_loss = total_loss + loss_weight * \
                loss(logit_list, label_list, step)

        return total_loss

    def generate_loss_mask(self, gt_mask, step, return_prob=False):
        self.decode_current_logits()
        loss = self.calculate_current_loss(gt_mask, step)
        if return_prob:
            mask, prob = self.predict_current_mask(return_prob=True)
            return loss, mask, prob
        else:
            mask = self.predict_current_mask()
            return loss, mask

    def keep_gt_mask(self, pred_mask, keep_prob=0.2):
        pred_mask = pred_mask.float()
        gt_mask = self.offline_masks[self.frame_step].float().squeeze(1)

        shape = [1 for _ in range(pred_mask.ndim)]
        shape[0] = self.batch_size
        random_tensor = keep_prob + torch.rand(
            shape, dtype=pred_mask.dtype, device=pred_mask.device)
        random_tensor.floor_()  # binarize

        pred_mask = pred_mask * (1 - random_tensor) + gt_mask * random_tensor

        return pred_mask

    def restart_engine(self, batch_size=1, enable_id_shuffle=False):

        self.batch_size = batch_size
        self.frame_step = 0
        self.last_mem_step = -1
        self.enable_id_shuffle = enable_id_shuffle
        self.freeze_id = False

        self.obj_nums = None
        self.pos_emb = None
        self.enc_size_2d = None
        self.enc_hw = None
        self.input_size_2d = None

        self.long_term_memories = None
        self.short_term_memories_list = []
        self.short_term_memories = None

        self.enable_offline_enc = False
        self.offline_enc_embs = None
        self.offline_one_hot_masks = None
        self.offline_frames = -1
        self.total_offline_frame_num = 0

        self.curr_enc_embs = None
        self.curr_memories = None
        self.curr_id_embs = None

        if enable_id_shuffle:
            self.id_shuffle_matrix = generate_permute_matrix(
                self.max_obj_num + 1, batch_size, gpu_id=self.gpu_id)
        else:
            self.id_shuffle_matrix = None

    def update_size(self, input_size, enc_size):
        self.input_size_2d = input_size
        self.enc_size_2d = enc_size
        self.enc_hw = self.enc_size_2d[0] * self.enc_size_2d[1]


class AOTInferEngine(nn.Module):
    def __init__(self,
                 aot_model,
                 gpu_id=0,
                 long_term_mem_gap=9999,
                 short_term_mem_skip=1,
                 max_aot_obj_num=None,
                 max_len_long_term=9999,):
        super().__init__()

        self.cfg = aot_model.cfg
        self.AOT = aot_model

        if max_aot_obj_num is None or max_aot_obj_num > aot_model.max_obj_num:
            self.max_aot_obj_num = aot_model.max_obj_num
        else:
            self.max_aot_obj_num = max_aot_obj_num

        self.gpu_id = gpu_id
        self.long_term_mem_gap = long_term_mem_gap
        self.short_term_mem_skip = short_term_mem_skip
        self.max_len_long_term = max_len_long_term
        self.aot_engines = []

        self.restart_engine()
    def restart_engine(self):
        del (self.aot_engines)
        self.aot_engines = []
        self.obj_nums = None

    def separate_mask(self, mask, obj_nums):
        if mask is None:
            return [None] * len(self.aot_engines)
        if len(self.aot_engines) == 1:
            return [mask], [obj_nums]

        separated_obj_nums = [
            self.max_aot_obj_num for _ in range(len(self.aot_engines))
        ]
        if obj_nums % self.max_aot_obj_num > 0:
            separated_obj_nums[-1] = obj_nums % self.max_aot_obj_num

        if len(mask.size()) == 3 or mask.size()[0] == 1:
            separated_masks = []
            for idx in range(len(self.aot_engines)):
                start_id = idx * self.max_aot_obj_num + 1
                end_id = (idx + 1) * self.max_aot_obj_num
                fg_mask = ((mask >= start_id) & (mask <= end_id)).float()
                separated_mask = (fg_mask * mask - start_id + 1) * fg_mask
                separated_masks.append(separated_mask)
            return separated_masks, separated_obj_nums
        else:
            prob = mask
            separated_probs = []
            for idx in range(len(self.aot_engines)):
                start_id = idx * self.max_aot_obj_num + 1
                end_id = (idx + 1) * self.max_aot_obj_num
                fg_prob = prob[start_id:(end_id + 1)]
                bg_prob = 1. - torch.sum(fg_prob, dim=1, keepdim=True)
                separated_probs.append(torch.cat([bg_prob, fg_prob], dim=1))
            return separated_probs, separated_obj_nums

    def min_logit_aggregation(self, all_logits):
        if len(all_logits) == 1:
            return all_logits[0]

        fg_logits = []
        bg_logits = []

        for logit in all_logits:
            bg_logits.append(logit[:, 0:1])
            fg_logits.append(logit[:, 1:1 + self.max_aot_obj_num])

        bg_logit, _ = torch.min(torch.cat(bg_logits, dim=1),
                                dim=1,
                                keepdim=True)
        merged_logit = torch.cat([bg_logit] + fg_logits, dim=1)

        return merged_logit

    def soft_logit_aggregation(self, all_logits):
        if len(all_logits) == 1:
            return all_logits[0]

        fg_probs = []
        bg_probs = []

        for logit in all_logits:
            prob = torch.softmax(logit, dim=1)
            bg_probs.append(prob[:, 0:1])
            fg_probs.append(prob[:, 1:1 + self.max_aot_obj_num])

        bg_prob = torch.prod(torch.cat(bg_probs, dim=1), dim=1, keepdim=True)
        merged_prob = torch.cat([bg_prob] + fg_probs,
                                dim=1).clamp(1e-5, 1 - 1e-5)
        merged_logit = torch.logit(merged_prob)

        return merged_logit

    def add_reference_frame(self, img, mask, obj_nums, frame_step=-1):
        if isinstance(obj_nums, list):
            obj_nums = obj_nums[0]
        self.obj_nums = obj_nums
        aot_num = max(np.ceil(obj_nums / self.max_aot_obj_num), 1)
        while (aot_num > len(self.aot_engines)):
            new_engine = AOTEngine(self.AOT, self.gpu_id,
                                   self.long_term_mem_gap,
                                   self.short_term_mem_skip,
                                   self.max_len_long_term,)
            new_engine.eval()
            self.aot_engines.append(new_engine)

        separated_masks, separated_obj_nums = self.separate_mask(
            mask, obj_nums)
        img_embs = None
        for aot_engine, separated_mask, separated_obj_num in zip(
                self.aot_engines, separated_masks, separated_obj_nums):
            aot_engine.add_reference_frame(img,
                                        separated_mask,
                                        obj_nums=[separated_obj_num],
                                        frame_step=frame_step,
                                        img_embs=img_embs)
                
            if img_embs is None:  # reuse image embeddings
                img_embs = aot_engine.curr_enc_embs

        self.update_size()

    def match_propogate_one_frame(self, img=None):
        img_embs = None
        for aot_engine in self.aot_engines:
            aot_engine.match_propogate_one_frame(img, img_embs=img_embs)
            if img_embs is None:  # reuse image embeddings
                img_embs = aot_engine.curr_enc_embs

    def decode_current_logits(self, output_size=None):
        all_logits = []
        for aot_engine in self.aot_engines:
            all_logits.append(aot_engine.decode_current_logits(output_size))
        pred_id_logits = self.soft_logit_aggregation(all_logits)
        return pred_id_logits

    def update_memory(self, curr_mask, skip_long_term_update=False):
        _curr_mask = F.interpolate(curr_mask,self.input_size_2d)
        separated_masks, _ = self.separate_mask(_curr_mask, self.obj_nums)
        for aot_engine, separated_mask in zip(self.aot_engines,
                                              separated_masks):
            aot_engine.update_short_term_memory(separated_mask, 
                                                skip_long_term_update=skip_long_term_update)

    def update_size(self):
        self.input_size_2d = self.aot_engines[0].input_size_2d
        self.enc_size_2d = self.aot_engines[0].enc_size_2d
        self.enc_hw = self.aot_engines[0].enc_hw