File size: 7,895 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Creates a MobileNetV3 Model as defined in:
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019).
Searching for MobileNetV3
arXiv preprint arXiv:1905.02244.
"""

import torch.nn as nn
import math
from utils.learning import freeze_params


def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6


class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


class SELayer(nn.Module):
    def __init__(self, channel, reduction=4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, _make_divisible(channel // reduction, 8)),
            nn.ReLU(inplace=True),
            nn.Linear(_make_divisible(channel // reduction, 8), channel),
            h_sigmoid())

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y


def conv_3x3_bn(inp, oup, stride, norm_layer=nn.BatchNorm2d):
    return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
                         norm_layer(oup), h_swish())


def conv_1x1_bn(inp, oup, norm_layer=nn.BatchNorm2d):
    return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                         norm_layer(oup), h_swish())


class InvertedResidual(nn.Module):
    def __init__(self,
                 inp,
                 hidden_dim,
                 oup,
                 kernel_size,
                 stride,
                 use_se,
                 use_hs,
                 dilation=1,
                 norm_layer=nn.BatchNorm2d):
        super(InvertedResidual, self).__init__()
        assert stride in [1, 2]

        self.identity = stride == 1 and inp == oup

        if inp == hidden_dim:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim,
                          hidden_dim,
                          kernel_size,
                          stride, (kernel_size - 1) // 2 * dilation,
                          dilation=dilation,
                          groups=hidden_dim,
                          bias=False),
                norm_layer(hidden_dim),
                h_swish() if use_hs else nn.ReLU(inplace=True),
                # Squeeze-and-Excite
                SELayer(hidden_dim) if use_se else nn.Identity(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                norm_layer(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                norm_layer(hidden_dim),
                h_swish() if use_hs else nn.ReLU(inplace=True),
                # dw
                nn.Conv2d(hidden_dim,
                          hidden_dim,
                          kernel_size,
                          stride, (kernel_size - 1) // 2 * dilation,
                          dilation=dilation,
                          groups=hidden_dim,
                          bias=False),
                norm_layer(hidden_dim),
                # Squeeze-and-Excite
                SELayer(hidden_dim) if use_se else nn.Identity(),
                h_swish() if use_hs else nn.ReLU(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                norm_layer(oup),
            )

    def forward(self, x):
        if self.identity:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV3Large(nn.Module):
    def __init__(self,
                 output_stride=16,
                 norm_layer=nn.BatchNorm2d,
                 width_mult=1.,
                 freeze_at=0):
        super(MobileNetV3Large, self).__init__()
        """
        Constructs a MobileNetV3-Large model
        """
        cfgs = [
            # k, t, c, SE, HS, s
            [3, 1, 16, 0, 0, 1],
            [3, 4, 24, 0, 0, 2],
            [3, 3, 24, 0, 0, 1],
            [5, 3, 40, 1, 0, 2],
            [5, 3, 40, 1, 0, 1],
            [5, 3, 40, 1, 0, 1],
            [3, 6, 80, 0, 1, 2],
            [3, 2.5, 80, 0, 1, 1],
            [3, 2.3, 80, 0, 1, 1],
            [3, 2.3, 80, 0, 1, 1],
            [3, 6, 112, 1, 1, 1],
            [3, 6, 112, 1, 1, 1],
            [5, 6, 160, 1, 1, 2],
            [5, 6, 160, 1, 1, 1],
            [5, 6, 160, 1, 1, 1]
        ]
        self.cfgs = cfgs

        # building first layer
        input_channel = _make_divisible(16 * width_mult, 8)
        layers = [conv_3x3_bn(3, input_channel, 2, norm_layer)]
        # building inverted residual blocks
        block = InvertedResidual
        now_stride = 2
        rate = 1
        for k, t, c, use_se, use_hs, s in self.cfgs:
            if now_stride == output_stride:
                dilation = rate
                rate *= s
                s = 1
            else:
                dilation = 1
                now_stride *= s
            output_channel = _make_divisible(c * width_mult, 8)
            exp_size = _make_divisible(input_channel * t, 8)
            layers.append(
                block(input_channel, exp_size, output_channel, k, s, use_se,
                      use_hs, dilation, norm_layer))
            input_channel = output_channel

        self.features = nn.Sequential(*layers)
        self.conv = conv_1x1_bn(input_channel, exp_size, norm_layer)
        # building last several layers

        self._initialize_weights()

        feature_4x = self.features[0:4]
        feautre_8x = self.features[4:7]
        feature_16x = self.features[7:13]
        feature_32x = self.features[13:]

        self.stages = [feature_4x, feautre_8x, feature_16x, feature_32x]

        self.freeze(freeze_at)

    def forward(self, x):
        xs = []
        for stage in self.stages:
            x = stage(x)
            xs.append(x)
        xs[-1] = self.conv(xs[-1])
        return xs

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()

    def freeze(self, freeze_at):
        if freeze_at >= 1:
            for m in self.stages[0][0]:
                freeze_params(m)

        for idx, stage in enumerate(self.stages, start=2):
            if freeze_at >= idx:
                freeze_params(stage)