File size: 24,642 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
from __future__ import division
import os
from glob import glob
import json
import random
import cv2
from PIL import Image

import numpy as np
import torch
from torch.utils.data import Dataset
import torchvision.transforms as TF

import dataloaders.image_transforms as IT

cv2.setNumThreads(0)


def _get_images(sample):
    return [sample['ref_img'], sample['prev_img']] + sample['curr_img']


def _get_labels(sample):
    return [sample['ref_label'], sample['prev_label']] + sample['curr_label']


def _merge_sample(sample1, sample2, min_obj_pixels=100, max_obj_n=10):

    sample1_images = _get_images(sample1)
    sample2_images = _get_images(sample2)

    sample1_labels = _get_labels(sample1)
    sample2_labels = _get_labels(sample2)

    obj_idx = torch.arange(0, max_obj_n * 2 + 1).view(max_obj_n * 2 + 1, 1, 1)
    selected_idx = None
    selected_obj = None

    all_img = []
    all_mask = []
    for idx, (s1_img, s2_img, s1_label, s2_label) in enumerate(
            zip(sample1_images, sample2_images, sample1_labels,
                sample2_labels)):
        s2_fg = (s2_label > 0).float()
        s2_bg = 1 - s2_fg
        merged_img = s1_img * s2_bg + s2_img * s2_fg
        merged_mask = s1_label * s2_bg.long() + (
            (s2_label + max_obj_n) * s2_fg.long())
        merged_mask = (merged_mask == obj_idx).float()
        if idx == 0:
            after_merge_pixels = merged_mask.sum(dim=(1, 2), keepdim=True)
            selected_idx = after_merge_pixels > min_obj_pixels
            selected_idx[0] = True
            obj_num = selected_idx.sum().int().item() - 1
            selected_idx = selected_idx.expand(-1,
                                               s1_label.size()[1],
                                               s1_label.size()[2])
            if obj_num > max_obj_n:
                selected_obj = list(range(1, obj_num + 1))
                random.shuffle(selected_obj)
                selected_obj = [0] + selected_obj[:max_obj_n]

        merged_mask = merged_mask[selected_idx].view(obj_num + 1,
                                                     s1_label.size()[1],
                                                     s1_label.size()[2])
        if obj_num > max_obj_n:
            merged_mask = merged_mask[selected_obj]
        merged_mask[0] += 0.1
        merged_mask = torch.argmax(merged_mask, dim=0, keepdim=True).long()

        all_img.append(merged_img)
        all_mask.append(merged_mask)

    sample = {
        'ref_img': all_img[0],
        'prev_img': all_img[1],
        'curr_img': all_img[2:],
        'ref_label': all_mask[0],
        'prev_label': all_mask[1],
        'curr_label': all_mask[2:]
    }
    sample['meta'] = sample1['meta']
    sample['meta']['obj_num'] = min(obj_num, max_obj_n)
    return sample


class StaticTrain(Dataset):
    def __init__(self,
                 root,
                 output_size,
                 seq_len=5,
                 max_obj_n=10,
                 dynamic_merge=True,
                 merge_prob=1.0,
                 aug_type='v1'):
        self.root = root
        self.clip_n = seq_len
        self.output_size = output_size
        self.max_obj_n = max_obj_n

        self.dynamic_merge = dynamic_merge
        self.merge_prob = merge_prob

        self.img_list = list()
        self.mask_list = list()

        dataset_list = list()
        lines = ['COCO', 'ECSSD', 'MSRA10K', 'PASCAL-S', 'PASCALVOC2012']
        for line in lines:
            dataset_name = line.strip()

            img_dir = os.path.join(root, 'JPEGImages', dataset_name)
            mask_dir = os.path.join(root, 'Annotations', dataset_name)

            img_list = sorted(glob(os.path.join(img_dir, '*.jpg'))) + \
                sorted(glob(os.path.join(img_dir, '*.png')))
            mask_list = sorted(glob(os.path.join(mask_dir, '*.png')))

            if len(img_list) > 0:
                if len(img_list) == len(mask_list):
                    dataset_list.append(dataset_name)
                    self.img_list += img_list
                    self.mask_list += mask_list
                    print(f'\t{dataset_name}: {len(img_list)} imgs.')
                else:
                    print(
                        f'\tPreTrain dataset {dataset_name} has {len(img_list)} imgs and {len(mask_list)} annots. Not match! Skip.'
                    )
            else:
                print(
                    f'\tPreTrain dataset {dataset_name} doesn\'t exist. Skip.')

        print(
            f'{len(self.img_list)} imgs are used for PreTrain. They are from {dataset_list}.'
        )

        self.aug_type = aug_type

        self.pre_random_horizontal_flip = IT.RandomHorizontalFlip(0.5)

        self.random_horizontal_flip = IT.RandomHorizontalFlip(0.3)

        if self.aug_type == 'v1':
            self.color_jitter = TF.ColorJitter(0.1, 0.1, 0.1, 0.03)
        elif self.aug_type == 'v2':
            self.color_jitter = TF.RandomApply(
                [TF.ColorJitter(0.4, 0.4, 0.2, 0.1)], p=0.8)
            self.gray_scale = TF.RandomGrayscale(p=0.2)
            self.blur = TF.RandomApply([IT.GaussianBlur([.1, 2.])], p=0.3)
        else:
            assert NotImplementedError

        self.random_affine = IT.RandomAffine(degrees=20,
                                             translate=(0.1, 0.1),
                                             scale=(0.9, 1.1),
                                             shear=10,
                                             resample=Image.BICUBIC,
                                             fillcolor=(124, 116, 104))
        base_ratio = float(output_size[1]) / output_size[0]
        self.random_resize_crop = IT.RandomResizedCrop(
            output_size, (0.8, 1),
            ratio=(base_ratio * 3. / 4., base_ratio * 4. / 3.),
            interpolation=Image.BICUBIC)
        self.to_tensor = TF.ToTensor()
        self.to_onehot = IT.ToOnehot(max_obj_n, shuffle=True)
        self.normalize = TF.Normalize((0.485, 0.456, 0.406),
                                      (0.229, 0.224, 0.225))

    def __len__(self):
        return len(self.img_list)

    def load_image_in_PIL(self, path, mode='RGB'):
        img = Image.open(path)
        img.load()  # Very important for loading large image
        return img.convert(mode)

    def sample_sequence(self, idx):
        img_pil = self.load_image_in_PIL(self.img_list[idx], 'RGB')
        mask_pil = self.load_image_in_PIL(self.mask_list[idx], 'P')

        frames = []
        masks = []

        img_pil, mask_pil = self.pre_random_horizontal_flip(img_pil, mask_pil)
        # img_pil, mask_pil = self.pre_random_vertical_flip(img_pil, mask_pil)

        for i in range(self.clip_n):
            img, mask = img_pil, mask_pil

            if i > 0:
                img, mask = self.random_horizontal_flip(img, mask)
                img, mask = self.random_affine(img, mask)

            img = self.color_jitter(img)

            img, mask = self.random_resize_crop(img, mask)

            if self.aug_type == 'v2':
                img = self.gray_scale(img)
                img = self.blur(img)

            mask = np.array(mask, np.uint8)

            if i == 0:
                mask, obj_list = self.to_onehot(mask)
                obj_num = len(obj_list)
            else:
                mask, _ = self.to_onehot(mask, obj_list)

            mask = torch.argmax(mask, dim=0, keepdim=True)

            frames.append(self.normalize(self.to_tensor(img)))
            masks.append(mask)

        sample = {
            'ref_img': frames[0],
            'prev_img': frames[1],
            'curr_img': frames[2:],
            'ref_label': masks[0],
            'prev_label': masks[1],
            'curr_label': masks[2:]
        }
        sample['meta'] = {
            'seq_name': self.img_list[idx],
            'frame_num': 1,
            'obj_num': obj_num
        }

        return sample

    def __getitem__(self, idx):
        sample1 = self.sample_sequence(idx)

        if self.dynamic_merge and (sample1['meta']['obj_num'] == 0
                                   or random.random() < self.merge_prob):
            rand_idx = np.random.randint(len(self.img_list))
            while (rand_idx == idx):
                rand_idx = np.random.randint(len(self.img_list))

            sample2 = self.sample_sequence(rand_idx)

            sample = self.merge_sample(sample1, sample2)
        else:
            sample = sample1

        return sample

    def merge_sample(self, sample1, sample2, min_obj_pixels=100):
        return _merge_sample(sample1, sample2, min_obj_pixels, self.max_obj_n)


class VOSTrain(Dataset):
    def __init__(self,
                 image_root,
                 label_root,
                 imglistdic,
                 transform=None,
                 rgb=True,
                 repeat_time=1,
                 rand_gap=3,
                 seq_len=5,
                 rand_reverse=True,
                 dynamic_merge=True,
                 enable_prev_frame=False,
                 merge_prob=0.3,
                 max_obj_n=10):
        self.image_root = image_root
        self.label_root = label_root
        self.rand_gap = rand_gap
        self.seq_len = seq_len
        self.rand_reverse = rand_reverse
        self.repeat_time = repeat_time
        self.transform = transform
        self.dynamic_merge = dynamic_merge
        self.merge_prob = merge_prob
        self.enable_prev_frame = enable_prev_frame
        self.max_obj_n = max_obj_n
        self.rgb = rgb
        self.imglistdic = imglistdic
        self.seqs = list(self.imglistdic.keys())
        print('Video Num: {} X {}'.format(len(self.seqs), self.repeat_time))

    def __len__(self):
        return int(len(self.seqs) * self.repeat_time)

    def reverse_seq(self, imagelist, lablist):
        if np.random.randint(2) == 1:
            imagelist = imagelist[::-1]
            lablist = lablist[::-1]
        return imagelist, lablist

    def get_ref_index(self,
                      seqname,
                      lablist,
                      objs,
                      min_fg_pixels=200,
                      max_try=5):
        bad_indices = []
        for _ in range(max_try):
            ref_index = np.random.randint(len(lablist))
            if ref_index in bad_indices:
                continue
            ref_label = Image.open(
                os.path.join(self.label_root, seqname, lablist[ref_index]))
            ref_label = np.array(ref_label, dtype=np.uint8)
            ref_objs = list(np.unique(ref_label))
            is_consistent = True
            for obj in ref_objs:
                if obj == 0:
                    continue
                if obj not in objs:
                    is_consistent = False
            xs, ys = np.nonzero(ref_label)
            if len(xs) > min_fg_pixels and is_consistent:
                break
            bad_indices.append(ref_index)
        return ref_index

    def get_ref_index_v2(self,
                         seqname,
                         lablist,
                         min_fg_pixels=200,
                         max_try=20,
                         total_gap=0):
        search_range = len(lablist) - total_gap
        if search_range <= 1:
            return 0
        bad_indices = []
        for _ in range(max_try):
            ref_index = np.random.randint(search_range)
            if ref_index in bad_indices:
                continue
            ref_label = Image.open(
                os.path.join(self.label_root, seqname, lablist[ref_index]))
            ref_label = np.array(ref_label, dtype=np.uint8)
            xs, ys = np.nonzero(ref_label)
            if len(xs) > min_fg_pixels:
                break
            bad_indices.append(ref_index)
        return ref_index

    def get_curr_gaps(self, seq_len, max_gap=999, max_try=10):
        for _ in range(max_try):
            curr_gaps = []
            total_gap = 0
            for _ in range(seq_len):
                gap = int(np.random.randint(self.rand_gap) + 1)
                total_gap += gap
                curr_gaps.append(gap)
            if total_gap <= max_gap:
                break
        return curr_gaps, total_gap

    def get_prev_index(self, lablist, total_gap):
        search_range = len(lablist) - total_gap
        if search_range > 1:
            prev_index = np.random.randint(search_range)
        else:
            prev_index = 0
        return prev_index

    def check_index(self, total_len, index, allow_reflect=True):
        if total_len <= 1:
            return 0

        if index < 0:
            if allow_reflect:
                index = -index
                index = self.check_index(total_len, index, True)
            else:
                index = 0
        elif index >= total_len:
            if allow_reflect:
                index = 2 * (total_len - 1) - index
                index = self.check_index(total_len, index, True)
            else:
                index = total_len - 1

        return index

    def get_curr_indices(self, lablist, prev_index, gaps):
        total_len = len(lablist)
        curr_indices = []
        now_index = prev_index
        for gap in gaps:
            now_index += gap
            curr_indices.append(self.check_index(total_len, now_index))
        return curr_indices

    def get_image_label(self, seqname, imagelist, lablist, index):
        image = cv2.imread(
            os.path.join(self.image_root, seqname, imagelist[index]))
        image = np.array(image, dtype=np.float32)

        if self.rgb:
            image = image[:, :, [2, 1, 0]]

        label = Image.open(
            os.path.join(self.label_root, seqname, lablist[index]))
        label = np.array(label, dtype=np.uint8)

        return image, label

    def sample_sequence(self, idx):
        idx = idx % len(self.seqs)
        seqname = self.seqs[idx]
        imagelist, lablist = self.imglistdic[seqname]
        frame_num = len(imagelist)
        if self.rand_reverse:
            imagelist, lablist = self.reverse_seq(imagelist, lablist)

        is_consistent = False
        max_try = 5
        try_step = 0
        while (is_consistent is False and try_step < max_try):
            try_step += 1

            # generate random gaps
            curr_gaps, total_gap = self.get_curr_gaps(self.seq_len - 1)

            if self.enable_prev_frame:  # prev frame is randomly sampled
                # get prev frame
                prev_index = self.get_prev_index(lablist, total_gap)
                prev_image, prev_label = self.get_image_label(
                    seqname, imagelist, lablist, prev_index)
                prev_objs = list(np.unique(prev_label))

                # get curr frames
                curr_indices = self.get_curr_indices(lablist, prev_index,
                                                     curr_gaps)
                curr_images, curr_labels, curr_objs = [], [], []
                for curr_index in curr_indices:
                    curr_image, curr_label = self.get_image_label(
                        seqname, imagelist, lablist, curr_index)
                    c_objs = list(np.unique(curr_label))
                    curr_images.append(curr_image)
                    curr_labels.append(curr_label)
                    curr_objs.extend(c_objs)

                objs = list(np.unique(prev_objs + curr_objs))

                start_index = prev_index
                end_index = max(curr_indices)
                # get ref frame
                _try_step = 0
                ref_index = self.get_ref_index_v2(seqname, lablist)
                while (ref_index > start_index and ref_index <= end_index
                       and _try_step < max_try):
                    _try_step += 1
                    ref_index = self.get_ref_index_v2(seqname, lablist)
                ref_image, ref_label = self.get_image_label(
                    seqname, imagelist, lablist, ref_index)
                ref_objs = list(np.unique(ref_label))
            else:  # prev frame is next to ref frame
                # get ref frame
                ref_index = self.get_ref_index_v2(seqname, lablist)

                ref_image, ref_label = self.get_image_label(
                    seqname, imagelist, lablist, ref_index)
                ref_objs = list(np.unique(ref_label))

                # get curr frames
                curr_indices = self.get_curr_indices(lablist, ref_index,
                                                     curr_gaps)
                curr_images, curr_labels, curr_objs = [], [], []
                for curr_index in curr_indices:
                    curr_image, curr_label = self.get_image_label(
                        seqname, imagelist, lablist, curr_index)
                    c_objs = list(np.unique(curr_label))
                    curr_images.append(curr_image)
                    curr_labels.append(curr_label)
                    curr_objs.extend(c_objs)

                objs = list(np.unique(curr_objs))
                prev_image, prev_label = curr_images[0], curr_labels[0]
                curr_images, curr_labels = curr_images[1:], curr_labels[1:]

            is_consistent = True
            for obj in objs:
                if obj == 0:
                    continue
                if obj not in ref_objs:
                    is_consistent = False
                    break

        # get meta info
        obj_num = list(np.sort(ref_objs))[-1]

        sample = {
            'ref_img': ref_image,
            'prev_img': prev_image,
            'curr_img': curr_images,
            'ref_label': ref_label,
            'prev_label': prev_label,
            'curr_label': curr_labels
        }
        sample['meta'] = {
            'seq_name': seqname,
            'frame_num': frame_num,
            'obj_num': obj_num
        }

        if self.transform is not None:
            sample = self.transform(sample)

        return sample

    def __getitem__(self, idx):
        sample1 = self.sample_sequence(idx)

        if self.dynamic_merge and (sample1['meta']['obj_num'] == 0
                                   or random.random() < self.merge_prob):
            rand_idx = np.random.randint(len(self.seqs))
            while (rand_idx == (idx % len(self.seqs))):
                rand_idx = np.random.randint(len(self.seqs))

            sample2 = self.sample_sequence(rand_idx)

            sample = self.merge_sample(sample1, sample2)
        else:
            sample = sample1

        return sample

    def merge_sample(self, sample1, sample2, min_obj_pixels=100):
        return _merge_sample(sample1, sample2, min_obj_pixels, self.max_obj_n)


class DAVIS2017_Train(VOSTrain):
    def __init__(self,
                 split=['train'],
                 root='./DAVIS',
                 transform=None,
                 rgb=True,
                 repeat_time=1,
                 full_resolution=True,
                 year=2017,
                 rand_gap=3,
                 seq_len=5,
                 rand_reverse=True,
                 dynamic_merge=True,
                 enable_prev_frame=False,
                 max_obj_n=10,
                 merge_prob=0.3):
        if full_resolution:
            resolution = 'Full-Resolution'
            if not os.path.exists(os.path.join(root, 'JPEGImages',
                                               resolution)):
                print('No Full-Resolution, use 480p instead.')
                resolution = '480p'
        else:
            resolution = '480p'
        image_root = os.path.join(root, 'JPEGImages', resolution)
        label_root = os.path.join(root, 'Annotations', resolution)
        seq_names = []
        for spt in split:
            with open(os.path.join(root, 'ImageSets', str(year),
                                   spt + '.txt')) as f:
                seqs_tmp = f.readlines()
            seqs_tmp = list(map(lambda elem: elem.strip(), seqs_tmp))
            seq_names.extend(seqs_tmp)
        imglistdic = {}
        for seq_name in seq_names:
            images = list(
                np.sort(os.listdir(os.path.join(image_root, seq_name))))
            labels = list(
                np.sort(os.listdir(os.path.join(label_root, seq_name))))
            imglistdic[seq_name] = (images, labels)

        super(DAVIS2017_Train, self).__init__(image_root,
                                              label_root,
                                              imglistdic,
                                              transform,
                                              rgb,
                                              repeat_time,
                                              rand_gap,
                                              seq_len,
                                              rand_reverse,
                                              dynamic_merge,
                                              enable_prev_frame,
                                              merge_prob=merge_prob,
                                              max_obj_n=max_obj_n)


class YOUTUBEVOS_Train(VOSTrain):
    def __init__(self,
                 root='./datasets/YTB',
                 year=2019,
                 transform=None,
                 rgb=True,
                 rand_gap=3,
                 seq_len=3,
                 rand_reverse=True,
                 dynamic_merge=True,
                 enable_prev_frame=False,
                 max_obj_n=10,
                 merge_prob=0.3):
        root = os.path.join(root, str(year), 'train')
        image_root = os.path.join(root, 'JPEGImages')
        label_root = os.path.join(root, 'Annotations')
        self.seq_list_file = os.path.join(root, 'meta.json')
        self._check_preprocess()
        seq_names = list(self.ann_f.keys())

        imglistdic = {}
        for seq_name in seq_names:
            data = self.ann_f[seq_name]['objects']
            obj_names = list(data.keys())
            images = []
            labels = []
            for obj_n in obj_names:
                if len(data[obj_n]["frames"]) < 2:
                    print("Short object: " + seq_name + '-' + obj_n)
                    continue
                images += list(
                    map(lambda x: x + '.jpg', list(data[obj_n]["frames"])))
                labels += list(
                    map(lambda x: x + '.png', list(data[obj_n]["frames"])))
            images = np.sort(np.unique(images))
            labels = np.sort(np.unique(labels))
            if len(images) < 2:
                print("Short video: " + seq_name)
                continue
            imglistdic[seq_name] = (images, labels)

        super(YOUTUBEVOS_Train, self).__init__(image_root,
                                               label_root,
                                               imglistdic,
                                               transform,
                                               rgb,
                                               1,
                                               rand_gap,
                                               seq_len,
                                               rand_reverse,
                                               dynamic_merge,
                                               enable_prev_frame,
                                               merge_prob=merge_prob,
                                               max_obj_n=max_obj_n)

    def _check_preprocess(self):
        if not os.path.isfile(self.seq_list_file):
            print('No such file: {}.'.format(self.seq_list_file))
            return False
        else:
            self.ann_f = json.load(open(self.seq_list_file, 'r'))['videos']
            return True


class TEST(Dataset):
    def __init__(
        self,
        seq_len=3,
        obj_num=3,
        transform=None,
    ):
        self.seq_len = seq_len
        self.obj_num = obj_num
        self.transform = transform

    def __len__(self):
        return 3000

    def __getitem__(self, idx):
        img = np.zeros((800, 800, 3)).astype(np.float32)
        label = np.ones((800, 800)).astype(np.uint8)
        sample = {
            'ref_img': img,
            'prev_img': img,
            'curr_img': [img] * (self.seq_len - 2),
            'ref_label': label,
            'prev_label': label,
            'curr_label': [label] * (self.seq_len - 2)
        }
        sample['meta'] = {
            'seq_name': 'test',
            'frame_num': 100,
            'obj_num': self.obj_num
        }

        if self.transform is not None:
            sample = self.transform(sample)
        return sample