File size: 9,951 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import sys
sys.path.append("..")
sys.path.append("./sam")
from sam.segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from aot_tracker import get_aot
import numpy as np
from tool.segmentor import Segmentor
from tool.detector import Detector
from tool.transfer_tools import draw_outline, draw_points
import cv2
from seg_track_anything import draw_mask


class SegTracker():
    def __init__(self,segtracker_args, sam_args, aot_args) -> None:
        """
         Initialize SAM and AOT.
        """
        self.sam = Segmentor(sam_args)
        self.tracker = get_aot(aot_args)
        self.detector = Detector(self.sam.device)
        self.sam_gap = segtracker_args['sam_gap']
        self.min_area = segtracker_args['min_area']
        self.max_obj_num = segtracker_args['max_obj_num']
        self.min_new_obj_iou = segtracker_args['min_new_obj_iou']
        self.reference_objs_list = []
        self.object_idx = 1
        self.curr_idx = 1
        self.origin_merged_mask = None  # init by segment-everything or update
        self.first_frame_mask = None

        # debug
        self.everything_points = []
        self.everything_labels = []
        print("SegTracker has been initialized")

    def seg(self,frame):
        '''
        Arguments:
            frame: numpy array (h,w,3)
        Return:
            origin_merged_mask: numpy array (h,w)
        '''
        frame = frame[:, :, ::-1]
        anns = self.sam.everything_generator.generate(frame)

        # anns is a list recording all predictions in an image
        if len(anns) == 0:
            return
        # merge all predictions into one mask (h,w)
        # note that the merged mask may lost some objects due to the overlapping
        self.origin_merged_mask = np.zeros(anns[0]['segmentation'].shape,dtype=np.uint8)
        idx = 1
        for ann in anns:
            if ann['area'] > self.min_area:
                m = ann['segmentation']
                self.origin_merged_mask[m==1] = idx
                idx += 1
                self.everything_points.append(ann["point_coords"][0])
                self.everything_labels.append(1)

        obj_ids = np.unique(self.origin_merged_mask)
        obj_ids = obj_ids[obj_ids!=0]

        self.object_idx = 1
        for id in obj_ids:
            if np.sum(self.origin_merged_mask==id) < self.min_area or self.object_idx > self.max_obj_num:
                self.origin_merged_mask[self.origin_merged_mask==id] = 0
            else:
                self.origin_merged_mask[self.origin_merged_mask==id] = self.object_idx
                self.object_idx += 1

        self.first_frame_mask = self.origin_merged_mask
        return self.origin_merged_mask

    def update_origin_merged_mask(self, updated_merged_mask):
        self.origin_merged_mask = updated_merged_mask
        # obj_ids = np.unique(updated_merged_mask)
        # obj_ids = obj_ids[obj_ids!=0]
        # self.object_idx = int(max(obj_ids)) + 1

    def reset_origin_merged_mask(self, mask, id):
        self.origin_merged_mask = mask
        self.curr_idx = id

    def add_reference(self,frame,mask,frame_step=0):
        '''
        Add objects in a mask for tracking.
        Arguments:
            frame: numpy array (h,w,3)
            mask: numpy array (h,w)
        '''
        self.reference_objs_list.append(np.unique(mask))
        self.curr_idx = self.get_obj_num() + 1
        self.tracker.add_reference_frame(frame,mask, self.curr_idx - 1, frame_step)

    def track(self,frame,update_memory=False):
        '''
        Track all known objects.
        Arguments:
            frame: numpy array (h,w,3)
        Return:
            origin_merged_mask: numpy array (h,w)
        '''
        pred_mask = self.tracker.track(frame)
        if update_memory:
            self.tracker.update_memory(pred_mask)
        return pred_mask.squeeze(0).squeeze(0).detach().cpu().numpy().astype(np.uint8)
    
    def get_tracking_objs(self):
        objs = set()
        for ref in self.reference_objs_list:
            objs.update(set(ref))
        objs = list(sorted(list(objs)))
        objs = [i for i in objs if i!=0]
        return objs
    
    def get_obj_num(self):
        objs = self.get_tracking_objs()
        if len(objs) == 0: return 0
        return int(max(objs))

    def find_new_objs(self, track_mask, seg_mask):
        '''
        Compare tracked results from AOT with segmented results from SAM. Select objects from background if they are not tracked.
        Arguments:
            track_mask: numpy array (h,w)
            seg_mask: numpy array (h,w)
        Return:
            new_obj_mask: numpy array (h,w)
        '''
        new_obj_mask = (track_mask==0) * seg_mask
        new_obj_ids = np.unique(new_obj_mask)
        new_obj_ids = new_obj_ids[new_obj_ids!=0]
        # obj_num = self.get_obj_num() + 1
        obj_num = self.curr_idx
        for idx in new_obj_ids:
            new_obj_area = np.sum(new_obj_mask==idx)
            obj_area = np.sum(seg_mask==idx)
            if new_obj_area/obj_area < self.min_new_obj_iou or new_obj_area < self.min_area\
                or obj_num > self.max_obj_num:
                new_obj_mask[new_obj_mask==idx] = 0
            else:
                new_obj_mask[new_obj_mask==idx] = obj_num
                obj_num += 1
        return new_obj_mask
        
    def restart_tracker(self):
        self.tracker.restart()

    def seg_acc_bbox(self, origin_frame: np.ndarray, bbox: np.ndarray,):
        ''''
        Use bbox-prompt to get mask
        Parameters:
            origin_frame: H, W, C
            bbox: [[x0, y0], [x1, y1]]
        Return:
            refined_merged_mask: numpy array (h, w)
            masked_frame: numpy array (h, w, c)
        '''
        # get interactive_mask
        interactive_mask = self.sam.segment_with_box(origin_frame, bbox)[0]
        refined_merged_mask = self.add_mask(interactive_mask)

        # draw mask
        masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask)

        # draw bbox
        masked_frame = cv2.rectangle(masked_frame, bbox[0], bbox[1], (0, 0, 255))

        return refined_merged_mask, masked_frame

    def seg_acc_click(self, origin_frame: np.ndarray, coords: np.ndarray, modes: np.ndarray, multimask=True):
        '''
        Use point-prompt to get mask
        Parameters:
            origin_frame: H, W, C
            coords: nd.array [[x, y]]
            modes: nd.array [[1]]
        Return:
            refined_merged_mask: numpy array (h, w)
            masked_frame: numpy array (h, w, c)
        '''
        # get interactive_mask
        interactive_mask = self.sam.segment_with_click(origin_frame, coords, modes, multimask)

        refined_merged_mask = self.add_mask(interactive_mask)

        # draw mask
        masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask)

        # draw points
        # self.everything_labels = np.array(self.everything_labels).astype(np.int64)
        # self.everything_points = np.array(self.everything_points).astype(np.int64)

        masked_frame = draw_points(coords, modes, masked_frame)

        # draw outline
        masked_frame = draw_outline(interactive_mask, masked_frame)

        return refined_merged_mask, masked_frame

    def add_mask(self, interactive_mask: np.ndarray):
        '''
        Merge interactive mask with self.origin_merged_mask
        Parameters:
            interactive_mask: numpy array (h, w)
        Return:
            refined_merged_mask: numpy array (h, w)
        '''
        if self.origin_merged_mask is None:
            self.origin_merged_mask = np.zeros(interactive_mask.shape,dtype=np.uint8)

        refined_merged_mask = self.origin_merged_mask.copy()
        refined_merged_mask[interactive_mask > 0] = self.curr_idx

        return refined_merged_mask
    
    def detect_and_seg(self, origin_frame: np.ndarray, grounding_caption, box_threshold, text_threshold, box_size_threshold=1, reset_image=False):
        '''
        Using Grounding-DINO to detect object acc Text-prompts
        Retrun:
            refined_merged_mask: numpy array (h, w)
            annotated_frame: numpy array (h, w, 3)
        '''
        # backup id and origin-merged-mask
        bc_id = self.curr_idx
        bc_mask = self.origin_merged_mask

        # get annotated_frame and boxes
        annotated_frame, boxes = self.detector.run_grounding(origin_frame, grounding_caption, box_threshold, text_threshold)
        for i in range(len(boxes)):
            bbox = boxes[i]
            if (bbox[1][0] - bbox[0][0]) * (bbox[1][1] - bbox[0][1]) > annotated_frame.shape[0] * annotated_frame.shape[1] * box_size_threshold:
                continue
            interactive_mask = self.sam.segment_with_box(origin_frame, bbox, reset_image)[0]
            refined_merged_mask = self.add_mask(interactive_mask)
            self.update_origin_merged_mask(refined_merged_mask)
            self.curr_idx += 1

        # reset origin_mask
        self.reset_origin_merged_mask(bc_mask, bc_id)

        return refined_merged_mask, annotated_frame

if __name__ == '__main__':
    from model_args import segtracker_args,sam_args,aot_args

    Seg_Tracker = SegTracker(segtracker_args, sam_args, aot_args)
    
    # ------------------ detect test ----------------------
    
    origin_frame = cv2.imread('/data2/cym/Seg_Tra_any/Segment-and-Track-Anything/debug/point.png')
    origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_BGR2RGB)
    grounding_caption = "swan.water"
    box_threshold = 0.25
    text_threshold = 0.25

    predicted_mask, annotated_frame = Seg_Tracker.detect_and_seg(origin_frame, grounding_caption, box_threshold, text_threshold)
    masked_frame = draw_mask(annotated_frame, predicted_mask)
    origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_RGB2BGR)

    cv2.imwrite('./debug/masked_frame.png', masked_frame)
    cv2.imwrite('./debug/x.png', annotated_frame)