File size: 25,867 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
import os
import time
import datetime as datetime
import json
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from dataloaders.eval_datasets import YOUTUBEVOS_Test, YOUTUBEVOS_DenseTest, DAVIS_Test, EVAL_TEST
import dataloaders.video_transforms as tr
from utils.image import flip_tensor, save_mask
from utils.checkpoint import load_network
from utils.eval import zip_folder
from networks.models import build_vos_model
from networks.engines import build_engine
class Evaluator(object):
def __init__(self, cfg, rank=0, seq_queue=None, info_queue=None):
self.gpu = cfg.TEST_GPU_ID + rank
self.gpu_num = cfg.TEST_GPU_NUM
self.rank = rank
self.cfg = cfg
self.seq_queue = seq_queue
self.info_queue = info_queue
self.print_log("Exp {}:".format(cfg.EXP_NAME))
self.print_log(json.dumps(cfg.__dict__, indent=4, sort_keys=True))
print("Use GPU {} for evaluating.".format(self.gpu))
torch.cuda.set_device(self.gpu)
self.print_log('Build VOS model.')
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(self.gpu)
self.process_pretrained_model()
self.prepare_dataset()
def process_pretrained_model(self):
cfg = self.cfg
if cfg.TEST_CKPT_PATH == 'test':
self.ckpt = 'test'
self.print_log('Test evaluation.')
return
if cfg.TEST_CKPT_PATH is None:
if cfg.TEST_CKPT_STEP is not None:
ckpt = str(cfg.TEST_CKPT_STEP)
else:
ckpts = os.listdir(cfg.DIR_CKPT)
if len(ckpts) > 0:
ckpts = list(
map(lambda x: int(x.split('_')[-1].split('.')[0]),
ckpts))
ckpt = np.sort(ckpts)[-1]
else:
self.print_log('No checkpoint in {}.'.format(cfg.DIR_CKPT))
exit()
self.ckpt = ckpt
if cfg.TEST_EMA:
cfg.DIR_CKPT = os.path.join(cfg.DIR_RESULT, 'ema_ckpt')
cfg.TEST_CKPT_PATH = os.path.join(cfg.DIR_CKPT,
'save_step_%s.pth' % ckpt)
try:
self.model, removed_dict = load_network(
self.model, cfg.TEST_CKPT_PATH, self.gpu)
except Exception as inst:
self.print_log(inst)
self.print_log('Try to use backup checkpoint.')
DIR_RESULT = './backup/{}/{}'.format(cfg.EXP_NAME,
cfg.STAGE_NAME)
DIR_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt')
TEST_CKPT_PATH = os.path.join(DIR_CKPT,
'save_step_%s.pth' % ckpt)
self.model, removed_dict = load_network(
self.model, TEST_CKPT_PATH, self.gpu)
if len(removed_dict) > 0:
self.print_log(
'Remove {} from pretrained model.'.format(removed_dict))
self.print_log('Load latest checkpoint from {}'.format(
cfg.TEST_CKPT_PATH))
else:
self.ckpt = 'unknown'
self.model, removed_dict = load_network(self.model,
cfg.TEST_CKPT_PATH,
self.gpu)
if len(removed_dict) > 0:
self.print_log(
'Remove {} from pretrained model.'.format(removed_dict))
self.print_log('Load checkpoint from {}'.format(
cfg.TEST_CKPT_PATH))
def prepare_dataset(self):
cfg = self.cfg
self.print_log('Process dataset...')
eval_transforms = transforms.Compose([
tr.MultiRestrictSize(cfg.TEST_MAX_SHORT_EDGE,
cfg.TEST_MAX_LONG_EDGE, cfg.TEST_FLIP,
cfg.TEST_MULTISCALE, cfg.MODEL_ALIGN_CORNERS),
tr.MultiToTensor()
])
exp_name = cfg.EXP_NAME
if 'aost' in cfg.MODEL_VOS:
exp_name += '_L{}'.format(int(cfg.MODEL_LSTT_NUM))
eval_name = '{}_{}_{}_{}_ckpt_{}'.format(cfg.TEST_DATASET,
cfg.TEST_DATASET_SPLIT,
exp_name, cfg.STAGE_NAME,
self.ckpt)
if cfg.TEST_EMA:
eval_name += '_ema'
if cfg.TEST_FLIP:
eval_name += '_flip'
if len(cfg.TEST_MULTISCALE) > 1:
eval_name += '_ms_' + str(cfg.TEST_MULTISCALE).replace(
'.', 'dot').replace('[', '').replace(']', '').replace(
', ', '_')
if 'youtubevos' in cfg.TEST_DATASET:
year = int(cfg.TEST_DATASET[-4:])
self.result_root = os.path.join(cfg.DIR_EVALUATION,
cfg.TEST_DATASET, eval_name,
'Annotations')
if '_all_frames' in cfg.TEST_DATASET_SPLIT:
split = cfg.TEST_DATASET_SPLIT.split('_')[0]
youtubevos_test = YOUTUBEVOS_DenseTest
self.result_root_sparse = os.path.join(cfg.DIR_EVALUATION,
cfg.TEST_DATASET,
eval_name + '_sparse',
'Annotations')
self.zip_dir_sparse = os.path.join(
cfg.DIR_EVALUATION, cfg.TEST_DATASET,
'{}_sparse.zip'.format(eval_name))
else:
split = cfg.TEST_DATASET_SPLIT
youtubevos_test = YOUTUBEVOS_Test
self.dataset = youtubevos_test(root=cfg.DIR_YTB,
year=year,
split=split,
transform=eval_transforms,
result_root=self.result_root)
elif cfg.TEST_DATASET == 'davis2017':
resolution = 'Full-Resolution' if cfg.TEST_DATASET_FULL_RESOLUTION else '480p'
self.result_root = os.path.join(cfg.DIR_EVALUATION,
cfg.TEST_DATASET, eval_name,
'Annotations', resolution)
self.dataset = DAVIS_Test(
split=[cfg.TEST_DATASET_SPLIT],
root=cfg.DIR_DAVIS,
year=2017,
transform=eval_transforms,
full_resolution=cfg.TEST_DATASET_FULL_RESOLUTION,
result_root=self.result_root)
elif cfg.TEST_DATASET == 'davis2016':
resolution = 'Full-Resolution' if cfg.TEST_DATASET_FULL_RESOLUTION else '480p'
self.result_root = os.path.join(cfg.DIR_EVALUATION,
cfg.TEST_DATASET, eval_name,
'Annotations', resolution)
self.dataset = DAVIS_Test(
split=[cfg.TEST_DATASET_SPLIT],
root=cfg.DIR_DAVIS,
year=2016,
transform=eval_transforms,
full_resolution=cfg.TEST_DATASET_FULL_RESOLUTION,
result_root=self.result_root)
elif cfg.TEST_DATASET == 'test':
self.result_root = os.path.join(cfg.DIR_EVALUATION,
cfg.TEST_DATASET, eval_name,
'Annotations')
self.dataset = EVAL_TEST(eval_transforms, self.result_root)
else:
self.print_log('Unknown dataset!')
exit()
self.print_log('Eval {} on {} {}:'.format(cfg.EXP_NAME,
cfg.TEST_DATASET,
cfg.TEST_DATASET_SPLIT))
self.source_folder = os.path.join(cfg.DIR_EVALUATION, cfg.TEST_DATASET,
eval_name, 'Annotations')
self.zip_dir = os.path.join(cfg.DIR_EVALUATION, cfg.TEST_DATASET,
'{}.zip'.format(eval_name))
if not os.path.exists(self.result_root):
try:
os.makedirs(self.result_root)
except Exception as inst:
self.print_log(inst)
self.print_log('Failed to mask dir: {}.'.format(
self.result_root))
self.print_log('Done!')
def evaluating(self):
cfg = self.cfg
self.model.eval()
video_num = 0
processed_video_num = 0
total_time = 0
total_frame = 0
total_sfps = 0
total_video_num = len(self.dataset)
start_eval_time = time.time()
if self.seq_queue is not None:
if self.rank == 0:
for seq_idx in range(total_video_num):
self.seq_queue.put(seq_idx)
for _ in range(self.gpu_num):
self.seq_queue.put('END')
coming_seq_idx = self.seq_queue.get()
all_engines = []
with torch.no_grad():
for seq_idx, seq_dataset in enumerate(self.dataset):
video_num += 1
if self.seq_queue is not None:
if coming_seq_idx == 'END':
break
elif coming_seq_idx != seq_idx:
continue
else:
coming_seq_idx = self.seq_queue.get()
processed_video_num += 1
for engine in all_engines:
engine.restart_engine()
seq_name = seq_dataset.seq_name
print('GPU {} - Processing Seq {} [{}/{}]:'.format(
self.gpu, seq_name, video_num, total_video_num))
torch.cuda.empty_cache()
seq_dataloader = DataLoader(seq_dataset,
batch_size=1,
shuffle=False,
num_workers=cfg.TEST_WORKERS,
pin_memory=True)
if 'all_frames' in cfg.TEST_DATASET_SPLIT:
images_sparse = seq_dataset.images_sparse
seq_dir_sparse = os.path.join(self.result_root_sparse,
seq_name)
if not os.path.exists(seq_dir_sparse):
os.makedirs(seq_dir_sparse)
seq_total_time = 0
seq_total_frame = 0
seq_pred_masks = {'dense': [], 'sparse': []}
seq_timers = []
for frame_idx, samples in enumerate(seq_dataloader):
all_preds = []
new_obj_label = None
aug_num = len(samples)
for aug_idx in range(aug_num):
if len(all_engines) <= aug_idx:
all_engines.append(
build_engine(cfg.MODEL_ENGINE,
phase='eval',
aot_model=self.model,
gpu_id=self.gpu,
long_term_mem_gap=self.cfg.
TEST_LONG_TERM_MEM_GAP,
short_term_mem_skip=self.cfg.
TEST_SHORT_TERM_MEM_SKIP))
all_engines[-1].eval()
if aug_num > 1: # if use test-time augmentation
torch.cuda.empty_cache() # release GPU memory
engine = all_engines[aug_idx]
sample = samples[aug_idx]
is_flipped = sample['meta']['flip']
obj_nums = sample['meta']['obj_num']
imgname = sample['meta']['current_name']
ori_height = sample['meta']['height']
ori_width = sample['meta']['width']
obj_idx = sample['meta']['obj_idx']
obj_nums = [int(obj_num) for obj_num in obj_nums]
obj_idx = [int(_obj_idx) for _obj_idx in obj_idx]
current_img = sample['current_img']
current_img = current_img.cuda(self.gpu,
non_blocking=True)
sample['current_img'] = current_img
if 'current_label' in sample.keys():
current_label = sample['current_label'].cuda(
self.gpu, non_blocking=True).float()
else:
current_label = None
#############################################################
if frame_idx == 0:
_current_label = F.interpolate(
current_label,
size=current_img.size()[2:],
mode="nearest")
engine.add_reference_frame(current_img,
_current_label,
frame_step=0,
obj_nums=obj_nums)
else:
if aug_idx == 0:
seq_timers.append([])
now_timer = torch.cuda.Event(
enable_timing=True)
now_timer.record()
seq_timers[-1].append(now_timer)
engine.match_propogate_one_frame(current_img)
pred_logit = engine.decode_current_logits(
(ori_height, ori_width))
if is_flipped:
pred_logit = flip_tensor(pred_logit, 3)
pred_prob = torch.softmax(pred_logit, dim=1)
all_preds.append(pred_prob)
if not is_flipped and current_label is not None and new_obj_label is None:
new_obj_label = current_label
if frame_idx > 0:
all_pred_probs = [
torch.mean(pred, dim=0, keepdim=True)
for pred in all_preds
]
all_pred_labels = [
torch.argmax(prob, dim=1, keepdim=True).float()
for prob in all_pred_probs
]
cat_all_preds = torch.cat(all_preds, dim=0)
pred_prob = torch.mean(cat_all_preds,
dim=0,
keepdim=True)
pred_label = torch.argmax(pred_prob,
dim=1,
keepdim=True).float()
if new_obj_label is not None:
keep = (new_obj_label == 0).float()
all_pred_labels = [label * \
keep + new_obj_label * (1 - keep) for label in all_pred_labels]
pred_label = pred_label * \
keep + new_obj_label * (1 - keep)
new_obj_nums = [int(pred_label.max().item())]
if cfg.TEST_FLIP:
all_flip_pred_labels = [
flip_tensor(label, 3)
for label in all_pred_labels
]
flip_pred_label = flip_tensor(pred_label, 3)
for aug_idx in range(len(samples)):
engine = all_engines[aug_idx]
current_img = samples[aug_idx]['current_img']
# current_label = flip_pred_label if samples[
# aug_idx]['meta']['flip'] else pred_label
current_label = all_flip_pred_labels[
aug_idx] if samples[aug_idx]['meta'][
'flip'] else all_pred_labels[aug_idx]
current_label = F.interpolate(
current_label,
size=engine.input_size_2d,
mode="nearest")
engine.add_reference_frame(
current_img,
current_label,
obj_nums=new_obj_nums,
frame_step=frame_idx)
engine.decode_current_logits(
(ori_height, ori_width))
engine.update_memory(current_label)
else:
if not cfg.MODEL_USE_PREV_PROB:
if cfg.TEST_FLIP:
all_flip_pred_labels = [
flip_tensor(label, 3)
for label in all_pred_labels
]
flip_pred_label = flip_tensor(
pred_label, 3)
for aug_idx in range(len(samples)):
engine = all_engines[aug_idx]
# current_label = flip_pred_label if samples[
# aug_idx]['meta']['flip'] else pred_label
current_label = all_flip_pred_labels[
aug_idx] if samples[aug_idx]['meta'][
'flip'] else all_pred_labels[
aug_idx]
current_label = F.interpolate(
current_label,
size=engine.input_size_2d,
mode="nearest")
engine.update_memory(current_label)
else:
if cfg.TEST_FLIP:
all_flip_pred_probs = [
flip_tensor(prob, 3)
for prob in all_pred_probs
]
flip_pred_prob = flip_tensor(pred_prob, 3)
for aug_idx in range(len(samples)):
engine = all_engines[aug_idx]
# current_prob = flip_pred_prob if samples[
# aug_idx]['meta']['flip'] else pred_prob
current_label = all_flip_pred_probs[
aug_idx] if samples[aug_idx]['meta'][
'flip'] else all_pred_probs[aug_idx]
current_prob = F.interpolate(
current_prob,
size=engine.input_size_2d,
mode="nearest")
engine.update_memory(current_prob)
now_timer = torch.cuda.Event(enable_timing=True)
now_timer.record()
seq_timers[-1].append((now_timer))
if cfg.TEST_FRAME_LOG:
torch.cuda.synchronize()
one_frametime = seq_timers[-1][0].elapsed_time(
seq_timers[-1][1]) / 1e3
obj_num = obj_nums[0]
print(
'GPU {} - Frame: {} - Obj Num: {}, Time: {}ms'.
format(self.gpu, imgname[0].split('.')[0],
obj_num, int(one_frametime * 1e3)))
# Save result
seq_pred_masks['dense'].append({
'path':
os.path.join(self.result_root, seq_name,
imgname[0].split('.')[0] + '.png'),
'mask':
pred_label,
'obj_idx':
obj_idx
})
if 'all_frames' in cfg.TEST_DATASET_SPLIT and imgname in images_sparse:
seq_pred_masks['sparse'].append({
'path':
os.path.join(self.result_root_sparse, seq_name,
imgname[0].split('.')[0] +
'.png'),
'mask':
pred_label,
'obj_idx':
obj_idx
})
# Save result
for mask_result in seq_pred_masks['dense'] + seq_pred_masks[
'sparse']:
save_mask(mask_result['mask'].squeeze(0).squeeze(0),
mask_result['path'], mask_result['obj_idx'])
del (seq_pred_masks)
for timer in seq_timers:
torch.cuda.synchronize()
one_frametime = timer[0].elapsed_time(timer[1]) / 1e3
seq_total_time += one_frametime
seq_total_frame += 1
del (seq_timers)
seq_avg_time_per_frame = seq_total_time / seq_total_frame
total_time += seq_total_time
total_frame += seq_total_frame
total_avg_time_per_frame = total_time / total_frame
total_sfps += seq_avg_time_per_frame
avg_sfps = total_sfps / processed_video_num
max_mem = torch.cuda.max_memory_allocated(
device=self.gpu) / (1024.**3)
print(
"GPU {} - Seq {} - FPS: {:.2f}. All-Frame FPS: {:.2f}, All-Seq FPS: {:.2f}, Max Mem: {:.2f}G"
.format(self.gpu, seq_name, 1. / seq_avg_time_per_frame,
1. / total_avg_time_per_frame, 1. / avg_sfps,
max_mem))
if self.seq_queue is not None:
if self.rank != 0:
self.info_queue.put({
'total_time': total_time,
'total_frame': total_frame,
'total_sfps': total_sfps,
'processed_video_num': processed_video_num,
'max_mem': max_mem
})
print('Finished the evaluation on GPU {}.'.format(self.gpu))
if self.rank == 0:
for _ in range(self.gpu_num - 1):
info_dict = self.info_queue.get()
total_time += info_dict['total_time']
total_frame += info_dict['total_frame']
total_sfps += info_dict['total_sfps']
processed_video_num += info_dict['processed_video_num']
max_mem = max(max_mem, info_dict['max_mem'])
all_reduced_total_avg_time_per_frame = total_time / total_frame
all_reduced_avg_sfps = total_sfps / processed_video_num
print(
"GPU {} - All-Frame FPS: {:.2f}, All-Seq FPS: {:.2f}, Max Mem: {:.2f}G"
.format(list(range(self.gpu_num)),
1. / all_reduced_total_avg_time_per_frame,
1. / all_reduced_avg_sfps, max_mem))
else:
print(
"GPU {} - All-Frame FPS: {:.2f}, All-Seq FPS: {:.2f}, Max Mem: {:.2f}G"
.format(self.gpu, 1. / total_avg_time_per_frame, 1. / avg_sfps,
max_mem))
if self.rank == 0:
zip_folder(self.source_folder, self.zip_dir)
self.print_log('Saving result to {}.'.format(self.zip_dir))
if 'all_frames' in cfg.TEST_DATASET_SPLIT:
zip_folder(self.result_root_sparse, self.zip_dir_sparse)
end_eval_time = time.time()
total_eval_time = str(
datetime.timedelta(seconds=int(end_eval_time -
start_eval_time)))
self.print_log("Total evaluation time: {}".format(total_eval_time))
def print_log(self, string):
if self.rank == 0:
print(string)
|