File size: 25,867 Bytes
c985ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import time
import datetime as datetime
import json

import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms

from dataloaders.eval_datasets import YOUTUBEVOS_Test, YOUTUBEVOS_DenseTest, DAVIS_Test, EVAL_TEST
import dataloaders.video_transforms as tr

from utils.image import flip_tensor, save_mask
from utils.checkpoint import load_network
from utils.eval import zip_folder

from networks.models import build_vos_model
from networks.engines import build_engine


class Evaluator(object):
    def __init__(self, cfg, rank=0, seq_queue=None, info_queue=None):
        self.gpu = cfg.TEST_GPU_ID + rank
        self.gpu_num = cfg.TEST_GPU_NUM
        self.rank = rank
        self.cfg = cfg
        self.seq_queue = seq_queue
        self.info_queue = info_queue

        self.print_log("Exp {}:".format(cfg.EXP_NAME))
        self.print_log(json.dumps(cfg.__dict__, indent=4, sort_keys=True))

        print("Use GPU {} for evaluating.".format(self.gpu))
        torch.cuda.set_device(self.gpu)

        self.print_log('Build VOS model.')
        self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(self.gpu)

        self.process_pretrained_model()

        self.prepare_dataset()

    def process_pretrained_model(self):
        cfg = self.cfg

        if cfg.TEST_CKPT_PATH == 'test':
            self.ckpt = 'test'
            self.print_log('Test evaluation.')
            return

        if cfg.TEST_CKPT_PATH is None:
            if cfg.TEST_CKPT_STEP is not None:
                ckpt = str(cfg.TEST_CKPT_STEP)
            else:
                ckpts = os.listdir(cfg.DIR_CKPT)
                if len(ckpts) > 0:
                    ckpts = list(
                        map(lambda x: int(x.split('_')[-1].split('.')[0]),
                            ckpts))
                    ckpt = np.sort(ckpts)[-1]
                else:
                    self.print_log('No checkpoint in {}.'.format(cfg.DIR_CKPT))
                    exit()
            self.ckpt = ckpt
            if cfg.TEST_EMA:
                cfg.DIR_CKPT = os.path.join(cfg.DIR_RESULT, 'ema_ckpt')
            cfg.TEST_CKPT_PATH = os.path.join(cfg.DIR_CKPT,
                                              'save_step_%s.pth' % ckpt)
            try:
                self.model, removed_dict = load_network(
                    self.model, cfg.TEST_CKPT_PATH, self.gpu)
            except Exception as inst:
                self.print_log(inst)
                self.print_log('Try to use backup checkpoint.')
                DIR_RESULT = './backup/{}/{}'.format(cfg.EXP_NAME,
                                                     cfg.STAGE_NAME)
                DIR_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt')
                TEST_CKPT_PATH = os.path.join(DIR_CKPT,
                                              'save_step_%s.pth' % ckpt)
                self.model, removed_dict = load_network(
                    self.model, TEST_CKPT_PATH, self.gpu)

            if len(removed_dict) > 0:
                self.print_log(
                    'Remove {} from pretrained model.'.format(removed_dict))
            self.print_log('Load latest checkpoint from {}'.format(
                cfg.TEST_CKPT_PATH))
        else:
            self.ckpt = 'unknown'
            self.model, removed_dict = load_network(self.model,
                                                    cfg.TEST_CKPT_PATH,
                                                    self.gpu)
            if len(removed_dict) > 0:
                self.print_log(
                    'Remove {} from pretrained model.'.format(removed_dict))
            self.print_log('Load checkpoint from {}'.format(
                cfg.TEST_CKPT_PATH))

    def prepare_dataset(self):
        cfg = self.cfg
        self.print_log('Process dataset...')
        eval_transforms = transforms.Compose([
            tr.MultiRestrictSize(cfg.TEST_MAX_SHORT_EDGE,
                                 cfg.TEST_MAX_LONG_EDGE, cfg.TEST_FLIP,
                                 cfg.TEST_MULTISCALE, cfg.MODEL_ALIGN_CORNERS),
            tr.MultiToTensor()
        ])

        exp_name = cfg.EXP_NAME
        if 'aost' in cfg.MODEL_VOS:
            exp_name += '_L{}'.format(int(cfg.MODEL_LSTT_NUM))

        eval_name = '{}_{}_{}_{}_ckpt_{}'.format(cfg.TEST_DATASET,
                                                 cfg.TEST_DATASET_SPLIT,
                                                 exp_name, cfg.STAGE_NAME,
                                                 self.ckpt)

        if cfg.TEST_EMA:
            eval_name += '_ema'
        if cfg.TEST_FLIP:
            eval_name += '_flip'
        if len(cfg.TEST_MULTISCALE) > 1:
            eval_name += '_ms_' + str(cfg.TEST_MULTISCALE).replace(
                '.', 'dot').replace('[', '').replace(']', '').replace(
                    ', ', '_')

        if 'youtubevos' in cfg.TEST_DATASET:
            year = int(cfg.TEST_DATASET[-4:])
            self.result_root = os.path.join(cfg.DIR_EVALUATION,
                                            cfg.TEST_DATASET, eval_name,
                                            'Annotations')
            if '_all_frames' in cfg.TEST_DATASET_SPLIT:
                split = cfg.TEST_DATASET_SPLIT.split('_')[0]
                youtubevos_test = YOUTUBEVOS_DenseTest

                self.result_root_sparse = os.path.join(cfg.DIR_EVALUATION,
                                                       cfg.TEST_DATASET,
                                                       eval_name + '_sparse',
                                                       'Annotations')
                self.zip_dir_sparse = os.path.join(
                    cfg.DIR_EVALUATION, cfg.TEST_DATASET,
                    '{}_sparse.zip'.format(eval_name))
            else:
                split = cfg.TEST_DATASET_SPLIT
                youtubevos_test = YOUTUBEVOS_Test

            self.dataset = youtubevos_test(root=cfg.DIR_YTB,
                                           year=year,
                                           split=split,
                                           transform=eval_transforms,
                                           result_root=self.result_root)

        elif cfg.TEST_DATASET == 'davis2017':
            resolution = 'Full-Resolution' if cfg.TEST_DATASET_FULL_RESOLUTION else '480p'
            self.result_root = os.path.join(cfg.DIR_EVALUATION,
                                            cfg.TEST_DATASET, eval_name,
                                            'Annotations', resolution)
            self.dataset = DAVIS_Test(
                split=[cfg.TEST_DATASET_SPLIT],
                root=cfg.DIR_DAVIS,
                year=2017,
                transform=eval_transforms,
                full_resolution=cfg.TEST_DATASET_FULL_RESOLUTION,
                result_root=self.result_root)

        elif cfg.TEST_DATASET == 'davis2016':
            resolution = 'Full-Resolution' if cfg.TEST_DATASET_FULL_RESOLUTION else '480p'
            self.result_root = os.path.join(cfg.DIR_EVALUATION,
                                            cfg.TEST_DATASET, eval_name,
                                            'Annotations', resolution)
            self.dataset = DAVIS_Test(
                split=[cfg.TEST_DATASET_SPLIT],
                root=cfg.DIR_DAVIS,
                year=2016,
                transform=eval_transforms,
                full_resolution=cfg.TEST_DATASET_FULL_RESOLUTION,
                result_root=self.result_root)

        elif cfg.TEST_DATASET == 'test':
            self.result_root = os.path.join(cfg.DIR_EVALUATION,
                                            cfg.TEST_DATASET, eval_name,
                                            'Annotations')
            self.dataset = EVAL_TEST(eval_transforms, self.result_root)
        else:
            self.print_log('Unknown dataset!')
            exit()

        self.print_log('Eval {} on {} {}:'.format(cfg.EXP_NAME,
                                                  cfg.TEST_DATASET,
                                                  cfg.TEST_DATASET_SPLIT))
        self.source_folder = os.path.join(cfg.DIR_EVALUATION, cfg.TEST_DATASET,
                                          eval_name, 'Annotations')
        self.zip_dir = os.path.join(cfg.DIR_EVALUATION, cfg.TEST_DATASET,
                                    '{}.zip'.format(eval_name))
        if not os.path.exists(self.result_root):
            try:
                os.makedirs(self.result_root)
            except Exception as inst:
                self.print_log(inst)
                self.print_log('Failed to mask dir: {}.'.format(
                    self.result_root))
        self.print_log('Done!')

    def evaluating(self):
        cfg = self.cfg
        self.model.eval()
        video_num = 0
        processed_video_num = 0
        total_time = 0
        total_frame = 0
        total_sfps = 0
        total_video_num = len(self.dataset)
        start_eval_time = time.time()

        if self.seq_queue is not None:
            if self.rank == 0:
                for seq_idx in range(total_video_num):
                    self.seq_queue.put(seq_idx)
                for _ in range(self.gpu_num):
                    self.seq_queue.put('END')
            coming_seq_idx = self.seq_queue.get()

        all_engines = []
        with torch.no_grad():
            for seq_idx, seq_dataset in enumerate(self.dataset):
                video_num += 1

                if self.seq_queue is not None:
                    if coming_seq_idx == 'END':
                        break
                    elif coming_seq_idx != seq_idx:
                        continue
                    else:
                        coming_seq_idx = self.seq_queue.get()

                processed_video_num += 1

                for engine in all_engines:
                    engine.restart_engine()

                seq_name = seq_dataset.seq_name
                print('GPU {} - Processing Seq {} [{}/{}]:'.format(
                    self.gpu, seq_name, video_num, total_video_num))
                torch.cuda.empty_cache()

                seq_dataloader = DataLoader(seq_dataset,
                                            batch_size=1,
                                            shuffle=False,
                                            num_workers=cfg.TEST_WORKERS,
                                            pin_memory=True)

                if 'all_frames' in cfg.TEST_DATASET_SPLIT:
                    images_sparse = seq_dataset.images_sparse
                    seq_dir_sparse = os.path.join(self.result_root_sparse,
                                                  seq_name)
                    if not os.path.exists(seq_dir_sparse):
                        os.makedirs(seq_dir_sparse)

                seq_total_time = 0
                seq_total_frame = 0
                seq_pred_masks = {'dense': [], 'sparse': []}
                seq_timers = []

                for frame_idx, samples in enumerate(seq_dataloader):

                    all_preds = []
                    new_obj_label = None
                    aug_num = len(samples)

                    for aug_idx in range(aug_num):
                        if len(all_engines) <= aug_idx:
                            all_engines.append(
                                build_engine(cfg.MODEL_ENGINE,
                                             phase='eval',
                                             aot_model=self.model,
                                             gpu_id=self.gpu,
                                             long_term_mem_gap=self.cfg.
                                             TEST_LONG_TERM_MEM_GAP,
                                             short_term_mem_skip=self.cfg.
                                             TEST_SHORT_TERM_MEM_SKIP))
                            all_engines[-1].eval()

                        if aug_num > 1:  # if use test-time augmentation
                            torch.cuda.empty_cache()  # release GPU memory

                        engine = all_engines[aug_idx]

                        sample = samples[aug_idx]

                        is_flipped = sample['meta']['flip']

                        obj_nums = sample['meta']['obj_num']
                        imgname = sample['meta']['current_name']
                        ori_height = sample['meta']['height']
                        ori_width = sample['meta']['width']
                        obj_idx = sample['meta']['obj_idx']

                        obj_nums = [int(obj_num) for obj_num in obj_nums]
                        obj_idx = [int(_obj_idx) for _obj_idx in obj_idx]

                        current_img = sample['current_img']
                        current_img = current_img.cuda(self.gpu,
                                                       non_blocking=True)
                        sample['current_img'] = current_img

                        if 'current_label' in sample.keys():
                            current_label = sample['current_label'].cuda(
                                self.gpu, non_blocking=True).float()
                        else:
                            current_label = None

                        #############################################################

                        if frame_idx == 0:
                            _current_label = F.interpolate(
                                current_label,
                                size=current_img.size()[2:],
                                mode="nearest")
                            engine.add_reference_frame(current_img,
                                                       _current_label,
                                                       frame_step=0,
                                                       obj_nums=obj_nums)
                        else:
                            if aug_idx == 0:
                                seq_timers.append([])
                                now_timer = torch.cuda.Event(
                                    enable_timing=True)
                                now_timer.record()
                                seq_timers[-1].append(now_timer)

                            engine.match_propogate_one_frame(current_img)
                            pred_logit = engine.decode_current_logits(
                                (ori_height, ori_width))

                            if is_flipped:
                                pred_logit = flip_tensor(pred_logit, 3)

                            pred_prob = torch.softmax(pred_logit, dim=1)
                            all_preds.append(pred_prob)

                            if not is_flipped and current_label is not None and new_obj_label is None:
                                new_obj_label = current_label

                    if frame_idx > 0:
                        all_pred_probs = [
                            torch.mean(pred, dim=0, keepdim=True)
                            for pred in all_preds
                        ]
                        all_pred_labels = [
                            torch.argmax(prob, dim=1, keepdim=True).float()
                            for prob in all_pred_probs
                        ]

                        cat_all_preds = torch.cat(all_preds, dim=0)
                        pred_prob = torch.mean(cat_all_preds,
                                               dim=0,
                                               keepdim=True)
                        pred_label = torch.argmax(pred_prob,
                                                  dim=1,
                                                  keepdim=True).float()

                        if new_obj_label is not None:
                            keep = (new_obj_label == 0).float()
                            all_pred_labels = [label * \
                                keep + new_obj_label * (1 - keep) for label in all_pred_labels]

                            pred_label = pred_label * \
                                keep + new_obj_label * (1 - keep)
                            new_obj_nums = [int(pred_label.max().item())]

                            if cfg.TEST_FLIP:
                                all_flip_pred_labels = [
                                    flip_tensor(label, 3)
                                    for label in all_pred_labels
                                ]
                                flip_pred_label = flip_tensor(pred_label, 3)

                            for aug_idx in range(len(samples)):
                                engine = all_engines[aug_idx]
                                current_img = samples[aug_idx]['current_img']

                                # current_label = flip_pred_label if samples[
                                #     aug_idx]['meta']['flip'] else pred_label
                                current_label = all_flip_pred_labels[
                                    aug_idx] if samples[aug_idx]['meta'][
                                        'flip'] else all_pred_labels[aug_idx]
                                current_label = F.interpolate(
                                    current_label,
                                    size=engine.input_size_2d,
                                    mode="nearest")
                                engine.add_reference_frame(
                                    current_img,
                                    current_label,
                                    obj_nums=new_obj_nums,
                                    frame_step=frame_idx)
                                engine.decode_current_logits(
                                    (ori_height, ori_width))
                                engine.update_memory(current_label)
                        else:
                            if not cfg.MODEL_USE_PREV_PROB:
                                if cfg.TEST_FLIP:
                                    all_flip_pred_labels = [
                                        flip_tensor(label, 3)
                                        for label in all_pred_labels
                                    ]
                                    flip_pred_label = flip_tensor(
                                        pred_label, 3)

                                for aug_idx in range(len(samples)):
                                    engine = all_engines[aug_idx]
                                    # current_label = flip_pred_label if samples[
                                    #     aug_idx]['meta']['flip'] else pred_label
                                    current_label = all_flip_pred_labels[
                                        aug_idx] if samples[aug_idx]['meta'][
                                            'flip'] else all_pred_labels[
                                                aug_idx]
                                    current_label = F.interpolate(
                                        current_label,
                                        size=engine.input_size_2d,
                                        mode="nearest")
                                    engine.update_memory(current_label)
                            else:
                                if cfg.TEST_FLIP:
                                    all_flip_pred_probs = [
                                        flip_tensor(prob, 3)
                                        for prob in all_pred_probs
                                    ]
                                    flip_pred_prob = flip_tensor(pred_prob, 3)

                                for aug_idx in range(len(samples)):
                                    engine = all_engines[aug_idx]
                                    # current_prob = flip_pred_prob if samples[
                                    #     aug_idx]['meta']['flip'] else pred_prob
                                    current_label = all_flip_pred_probs[
                                        aug_idx] if samples[aug_idx]['meta'][
                                            'flip'] else all_pred_probs[aug_idx]
                                    current_prob = F.interpolate(
                                        current_prob,
                                        size=engine.input_size_2d,
                                        mode="nearest")
                                    engine.update_memory(current_prob)

                        now_timer = torch.cuda.Event(enable_timing=True)
                        now_timer.record()
                        seq_timers[-1].append((now_timer))

                        if cfg.TEST_FRAME_LOG:
                            torch.cuda.synchronize()
                            one_frametime = seq_timers[-1][0].elapsed_time(
                                seq_timers[-1][1]) / 1e3
                            obj_num = obj_nums[0]
                            print(
                                'GPU {} - Frame: {} - Obj Num: {}, Time: {}ms'.
                                format(self.gpu, imgname[0].split('.')[0],
                                       obj_num, int(one_frametime * 1e3)))
                        # Save result
                        seq_pred_masks['dense'].append({
                            'path':
                            os.path.join(self.result_root, seq_name,
                                         imgname[0].split('.')[0] + '.png'),
                            'mask':
                            pred_label,
                            'obj_idx':
                            obj_idx
                        })
                        if 'all_frames' in cfg.TEST_DATASET_SPLIT and imgname in images_sparse:
                            seq_pred_masks['sparse'].append({
                                'path':
                                os.path.join(self.result_root_sparse, seq_name,
                                             imgname[0].split('.')[0] +
                                             '.png'),
                                'mask':
                                pred_label,
                                'obj_idx':
                                obj_idx
                            })

                # Save result
                for mask_result in seq_pred_masks['dense'] + seq_pred_masks[
                        'sparse']:
                    save_mask(mask_result['mask'].squeeze(0).squeeze(0),
                              mask_result['path'], mask_result['obj_idx'])
                del (seq_pred_masks)

                for timer in seq_timers:
                    torch.cuda.synchronize()
                    one_frametime = timer[0].elapsed_time(timer[1]) / 1e3
                    seq_total_time += one_frametime
                    seq_total_frame += 1
                del (seq_timers)

                seq_avg_time_per_frame = seq_total_time / seq_total_frame
                total_time += seq_total_time
                total_frame += seq_total_frame
                total_avg_time_per_frame = total_time / total_frame
                total_sfps += seq_avg_time_per_frame
                avg_sfps = total_sfps / processed_video_num
                max_mem = torch.cuda.max_memory_allocated(
                    device=self.gpu) / (1024.**3)
                print(
                    "GPU {} - Seq {} - FPS: {:.2f}. All-Frame FPS: {:.2f}, All-Seq FPS: {:.2f}, Max Mem: {:.2f}G"
                    .format(self.gpu, seq_name, 1. / seq_avg_time_per_frame,
                            1. / total_avg_time_per_frame, 1. / avg_sfps,
                            max_mem))

        if self.seq_queue is not None:
            if self.rank != 0:
                self.info_queue.put({
                    'total_time': total_time,
                    'total_frame': total_frame,
                    'total_sfps': total_sfps,
                    'processed_video_num': processed_video_num,
                    'max_mem': max_mem
                })
            print('Finished the evaluation on GPU {}.'.format(self.gpu))
            if self.rank == 0:
                for _ in range(self.gpu_num - 1):
                    info_dict = self.info_queue.get()
                    total_time += info_dict['total_time']
                    total_frame += info_dict['total_frame']
                    total_sfps += info_dict['total_sfps']
                    processed_video_num += info_dict['processed_video_num']
                    max_mem = max(max_mem, info_dict['max_mem'])
                all_reduced_total_avg_time_per_frame = total_time / total_frame
                all_reduced_avg_sfps = total_sfps / processed_video_num
                print(
                    "GPU {} - All-Frame FPS: {:.2f}, All-Seq FPS: {:.2f}, Max Mem: {:.2f}G"
                    .format(list(range(self.gpu_num)),
                            1. / all_reduced_total_avg_time_per_frame,
                            1. / all_reduced_avg_sfps, max_mem))
        else:
            print(
                "GPU {} - All-Frame FPS: {:.2f}, All-Seq FPS: {:.2f}, Max Mem: {:.2f}G"
                .format(self.gpu, 1. / total_avg_time_per_frame, 1. / avg_sfps,
                        max_mem))

        if self.rank == 0:
            zip_folder(self.source_folder, self.zip_dir)
            self.print_log('Saving result to {}.'.format(self.zip_dir))
            if 'all_frames' in cfg.TEST_DATASET_SPLIT:
                zip_folder(self.result_root_sparse, self.zip_dir_sparse)
            end_eval_time = time.time()
            total_eval_time = str(
                datetime.timedelta(seconds=int(end_eval_time -
                                               start_eval_time)))
            self.print_log("Total evaluation time: {}".format(total_eval_time))

    def print_log(self, string):
        if self.rank == 0:
            print(string)