data_mining / tool /transfer_tools.py
aikenml's picture
Upload folder using huggingface_hub
92bea3e
import cv2
import numpy as np
def mask2bbox(mask):
if len(np.where(mask > 0)[0]) == 0:
print(f'not mask')
return np.array([[0, 0], [0, 0]]).astype(np.int64)
x_ = np.sum(mask, axis=0)
y_ = np.sum(mask, axis=1)
x0 = np.min(np.nonzero(x_)[0])
x1 = np.max(np.nonzero(x_)[0])
y0 = np.min(np.nonzero(y_)[0])
y1 = np.max(np.nonzero(y_)[0])
return np.array([[x0, y0], [x1, y1]]).astype(np.int64)
def draw_outline(mask, frame):
_, binary_mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, (0, 0, 255), 2)
return frame
def draw_points(points, modes, frame):
neg_points = points[np.argwhere(modes==0)[:, 0]]
pos_points = points[np.argwhere(modes==1)[:, 0]]
for i in range(len(neg_points)):
point = neg_points[i]
cv2.circle(frame, (point[0], point[1]), 8, (255, 80, 80), -1)
for i in range(len(pos_points)):
point = pos_points[i]
cv2.circle(frame, (point[0], point[1]), 8, (0, 153, 255), -1)
return frame
if __name__ == '__main__':
mask = cv2.imread('./debug/mask.jpg', cv2.IMREAD_GRAYSCALE)
frame = cv2.imread('./debug/frame.jpg')
draw_frame = draw_outline(mask, frame)
cv2.imwrite('./debug/outline.jpg', draw_frame)
# bbox = mask2bbox(mask)
# draw_0 = cv2.rectangle(mask, bbox[0], bbox[1], (0, 0, 255))
# cv2.imwrite('./debug/rect.png', draw_0)