data_mining / tool /detector.py
aikenml's picture
Upload folder using huggingface_hub
92bea3e
raw
history blame
3.86 kB
import torch
import numpy as np
import cv2
import PIL
from groundingdino.models import build_model as build_grounding_dino
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from torchvision.ops import box_convert
class Detector:
def __init__(self, device):
config_file = "src/groundingdino/groundingdino/config/GroundingDINO_SwinT_OGC.py"
grounding_dino_ckpt = './ckpt/groundingdino_swint_ogc.pth'
args = SLConfig.fromfile(config_file)
args.device = device
self.deivce = device
self.gd = build_grounding_dino(args)
checkpoint = torch.load(grounding_dino_ckpt, map_location='cpu')
log = self.gd.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(grounding_dino_ckpt, log))
self.gd.eval()
def image_transform_grounding(self, init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(self, init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
def transfer_boxes_format(self, boxes, height, width):
boxes = boxes * torch.Tensor([width, height, width, height])
boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy")
transfered_boxes = []
for i in range(len(boxes)):
box = boxes[i]
transfered_box = [[int(box[0]), int(box[1])], [int(box[2]), int(box[3])]]
transfered_boxes.append(transfered_box)
transfered_boxes = np.array(transfered_boxes)
return transfered_boxes
@torch.no_grad()
def run_grounding(self, origin_frame, grounding_caption, box_threshold, text_threshold):
'''
return:
annotated_frame:nd.array
transfered_boxes: nd.array [N, 4]: [[x0, y0], [x1, y1]]
'''
height, width, _ = origin_frame.shape
img_pil = PIL.Image.fromarray(origin_frame)
re_width, re_height = img_pil.size
_, image_tensor = self.image_transform_grounding(img_pil)
# img_pil = self.image_transform_grounding_for_vis(img_pil)
# run grounidng
boxes, logits, phrases = predict(self.gd, image_tensor, grounding_caption, box_threshold, text_threshold, device=self.deivce)
annotated_frame = annotate(image_source=np.asarray(img_pil), boxes=boxes, logits=logits, phrases=phrases)[:, :, ::-1]
annotated_frame = cv2.resize(annotated_frame, (width, height), interpolation=cv2.INTER_LINEAR)
# transfer boxes to sam-format
transfered_boxes = self.transfer_boxes_format(boxes, re_height, re_width)
return annotated_frame, transfered_boxes
if __name__ == "__main__":
detector = Detector("cuda")
origin_frame = cv2.imread('./debug/point.png')
origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_BGR2RGB)
grounding_caption = "swan.water"
box_threshold = 0.25
text_threshold = 0.25
annotated_frame, boxes = detector.run_grounding(origin_frame, grounding_caption, box_threshold, text_threshold)
cv2.imwrite('./debug/x.png', annotated_frame)
for i in range(len(boxes)):
bbox = boxes[i]
origin_frame = cv2.rectangle(origin_frame, bbox[0], bbox[1], (0, 0, 255))
cv2.imwrite('./debug/bbox_frame.png', origin_frame)