import gradio as gr import numpy as np import random import torch import spaces import re from diffusers import ( DiffusionPipeline, AutoencoderTiny, ) from huggingface_hub import hf_hub_download import config styles_name = [style["name"] for style in config.style_list] MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2240 def feifeimodload(): dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained( "aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype ).to(device) pipe.load_lora_weights( hf_hub_download("aifeifei798/feifei-flux-lora-v1.1", "feifei-v1.1.safetensors"), adapter_name="feifei", ) pipe.load_lora_weights( hf_hub_download("aifeifei798/sldr_flux_nsfw_v2-studio", "sldr_flux_nsfw_v2-studio.safetensors"), adapter_name="sldr_flux_nsfw_v2", ) pipe.vae.enable_slicing() pipe.vae.enable_tiling() torch.cuda.empty_cache() return pipe pipe = feifeimodload() @spaces.GPU() def infer(prompt="", styles_Radio="(None)", Expansion_select=False, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidancescale=3.5, num_feifei=0.35, nsfw_select=False, nsfw_slider=1, progress=gr.Progress(track_tqdm=True)): if nsfw_select: pipe.set_adapters( ["feifei", "sldr_flux_nsfw_v2"], adapter_weights=[num_feifei,nsfw_slider], ) pipe.fuse_lora( adapter_name=["feifei", "sldr_flux_nsfw_v2"], lora_scale=1.0, ) else: pipe.set_adapters( ["feifei"], adapter_weights=[num_feifei], ) pipe.fuse_lora( adapter_name=["feifei"], lora_scale=1.0, ) if Expansion_select: # Define the replacement string replacement = " feifei, A beautiful, 18 yo kpop idol, large-busted Japanese slim girl, with light makeup, gazing deeply into the camera, " # Perform the replacements with re.IGNORECASE prompt = re.sub(r"girl", replacement, prompt, flags=re.IGNORECASE) prompt = re.sub(r"young woman", replacement, prompt, flags=re.IGNORECASE) prompt = re.sub(r"woman", replacement, prompt, flags=re.IGNORECASE) prompt = re.sub(r"model", replacement, prompt, flags=re.IGNORECASE) if styles_Radio: style_name = styles_Radio for style in config.style_list: if style["name"] == style_name: prompt = style["prompt"].replace("{prompt}", prompt) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe.set_adapters( ["feifei"], adapter_weights=[num_feifei], ) pipe.fuse_lora( adapter_name=["feifei"], lora_scale=1.0, ) image = pipe( prompt = "flux, 8k, ", prompt_2 = prompt, width = width, height = height, num_inference_steps = num_inference_steps, generator = generator, guidance_scale=guidancescale ).images[0] return image, seed examples = [ "this photo is a girl", "this photo is a girl in bikini", "this photo is a cute girl in cute bikini", "girl, sunrise", "DarkIdol flux girl", "a sexy girl,poses,look at camera,Slim figure, gigantic breasts,poses,natural,High-quality photography, creative composition, fashion foresight, a strong visual style, and an aura of luxury and sophistication collectively define the distinctive aesthetic of Vogue magazine.", "real model slight smile girl in real life", "real model smile girl in real life", "real model girl in real life", "A high-resolution photograph of girl in a serene, natural setting, with soft, warm lighting, and a minimalist aesthetic, showcasing a elegant fragrance bottle and the model's effortless, emotive expression, with impeccable styling, and a muted color palette, evoking a sense of understated luxury and refinement." ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Duke86Syl """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=12, placeholder="Enter your prompt", value="", container=False, ) run_button = gr.Button("Run") with gr.Row(): styles_Radio = gr.Dropdown( styles_name, label="Styles", multiselect=False, value="(None)", ) result = gr.Image(label="Result", show_label=False,height=520) Expansion_select = gr.Checkbox(label="FeiFei Expansion") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): gr.Markdown(''' - 21:9 2240x1024 - 16:9 1856x1024 - 9:7 1344x1024 ''') width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1344, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) with gr.Row(): guidancescale = gr.Slider( label="Guidance scale", minimum=0, maximum=10, step=0.1, value=3.5, ) with gr.Row(): num_feifei = gr.Slider( label="FeiFei", minimum=0, maximum=2, step=0.05, value=0.45, ) with gr.Row(): nsfw_select = gr.Checkbox(label="NSFW") nsfw_slider = gr.Slider( label="NSFW", minimum=0, maximum=2, step=0.05, value=0.75, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples=False ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, styles_Radio, Expansion_select, seed, randomize_seed, width, height, num_inference_steps, guidancescale, num_feifei, nsfw_select, nsfw_slider], outputs = [result, seed] ) demo.launch()