File size: 12,139 Bytes
d9bf6c2
 
 
af1b1ee
3182722
 
 
 
cc6796a
 
 
 
 
 
 
 
d9bf6c2
cc6796a
d9bf6c2
cc6796a
 
 
 
 
4542f7d
 
cc6796a
689ae36
d9bf6c2
cc6796a
3182722
 
 
cc6796a
 
3182722
 
 
cc6796a
 
3182722
 
 
689ae36
cc6796a
3182722
 
 
cc6796a
 
3182722
 
 
cc6796a
 
3182722
 
 
cc6796a
ce0b5c5
44bb60b
 
 
 
cc6796a
44bb60b
 
 
 
 
 
e773abb
3182722
d7895f3
3182722
 
 
 
cc6796a
3182722
 
 
 
 
 
 
cc6796a
3182722
 
 
 
 
 
cc6796a
 
 
 
 
 
 
 
 
 
3182722
 
 
 
cc6796a
3182722
e773abb
4542f7d
 
cc6796a
44bb60b
 
4542f7d
 
 
 
cc6796a
d7895f3
e773abb
db34fd4
 
 
3182722
 
 
 
 
4542f7d
e773abb
 
 
cc6796a
 
 
 
 
 
e773abb
 
 
 
cc6796a
d7895f3
 
25f9993
e773abb
d7895f3
e773abb
cc6796a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce0b5c5
d7895f3
cc6796a
db34fd4
 
 
 
 
 
 
 
 
 
dde08ee
689ae36
 
cc6796a
dde08ee
689ae36
 
ce0b5c5
689ae36
dde08ee
d7895f3
dde08ee
 
 
 
 
 
 
 
689ae36
d7895f3
dde08ee
 
 
d7895f3
ce0b5c5
689ae36
 
 
dde08ee
 
 
 
 
 
 
 
 
 
689ae36
ce0b5c5
689ae36
db34fd4
 
 
 
 
 
 
 
 
ce0b5c5
dde08ee
689ae36
dde08ee
 
 
 
689ae36
dde08ee
689ae36
db34fd4
dde08ee
689ae36
9fbdefb
cc6796a
db34fd4
 
dde08ee
689ae36
db34fd4
 
dde08ee
cc6796a
 
 
dde08ee
 
cc6796a
db34fd4
 
 
 
dde08ee
 
cc6796a
 
 
 
 
dde08ee
cc6796a
 
 
 
 
 
689ae36
dde08ee
db34fd4
dde08ee
cc6796a
dde08ee
ce0b5c5
a6e8e74
cc6796a
 
a6e8e74
907721e
2a217f4
8bfdc69
a6e8e74
db34fd4
 
 
 
 
 
 
 
dde08ee
a6e8e74
db34fd4
dde08ee
db34fd4
 
 
 
8bfdc69
db34fd4
e773abb
db34fd4
 
 
 
 
 
ce0b5c5
 
cc6796a
bfaa4d5
d7895f3
cc6796a
689ae36
d7895f3
db34fd4
cc6796a
689ae36
db34fd4
689ae36
e773abb
d9bf6c2
 
dde08ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gradio as gr
import openai
import os
import base64
from functools import lru_cache
from PIL import Image
import cv2
import numpy as np
import datetime
import uuid
import requests
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_JUSTIFY
from reportlab.lib import colors

# OpenAI ve GitHub Konfigürasyonları
openai.api_key = os.getenv("OPENAI_API_KEY")
GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
REPO_OWNER = os.getenv("GITHUB_REPO_OWNER")
REPO_NAME = os.getenv("GITHUB_REPO_NAME")

# Sabitler
ANALYSIS_MODEL = "gpt-4o"
MAX_TOKENS = 4096
PDF_DIR = "reports"
os.makedirs(PDF_DIR, exist_ok=True)

# Persona Tanımları
PERSONAS = {
    "Aggressive Trader": {
        "description": "High-risk, short-term gains, leverages volatile market movements.",
        "prompt": "Focus on high-risk strategies, short-term gains, and leverage opportunities. Suggest aggressive entry and exit points.",
        "color": colors.red
    },
    "Conservative Trader": {
        "description": "Low-risk, long-term investments, prioritizes capital preservation.",
        "prompt": "Focus on low-risk strategies, long-term investments, and capital preservation. Suggest safe entry points and strict stop-loss levels.",
        "color": colors.blue
    },
    "Neutral Trader": {
        "description": "Balanced approach, combines short and long-term strategies.",
        "prompt": "Focus on balanced strategies, combining short and long-term opportunities. Suggest moderate risk levels and trend-following approaches.",
        "color": colors.green
    },
    "Reactive Trader": {
        "description": "Quick decisions based on market news and social media trends.",
        "prompt": "Focus on quick decision-making, momentum trading, and reacting to market news. Suggest strategies based on current trends and FOMO opportunities.",
        "color": colors.orange
    },
    "Systematic Trader": {
        "description": "Algorithm-based, rule-driven, and emotionless trading.",
        "prompt": "Focus on algorithmic strategies, backtested rules, and quantitative analysis. Suggest data-driven entry and exit points.",
        "color": colors.purple
    }
}

# Sistem Prompt'u
SYSTEM_PROMPT = """Professional Crypto Technical Analyst:
1. Identify all technical patterns in the chart
2. Determine key support/resistance levels
3. Analyze volume and momentum indicators
4. Calculate risk/reward ratios
5. Provide clear trading recommendations
6. Include specific price targets
7. Assess market sentiment
8. Evaluate trend strength
9. Identify potential breakout/breakdown levels
10. Provide time-based projections"""

class ChartAnalyzer:
    def __init__(self):
        self.last_optimized_path = ""

    def validate_image(self, image_path: str) -> bool:
        try:
            with Image.open(image_path) as img:
                img.verify()

            img = cv2.imread(image_path)
            if img is None:
                return False

            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            edges = cv2.Canny(gray, 50, 150)
            return np.sum(edges) >= 1000
        except Exception:
            return False

    def optimize_image(self, image_path: str) -> str:
        try:
            img = Image.open(image_path)
            original_width, original_height = img.size
            max_size = 1024

            if original_width > max_size or original_height > max_size:
                ratio = min(max_size/original_width, max_size/original_height)
                new_size = (int(original_width * ratio), int(original_height * ratio))
                img = img.resize(new_size, Image.LANCZOS)

            unique_id = uuid.uuid4().hex
            optimized_path = f"{PDF_DIR}/optimized_chart_{unique_id}.png"
            img.save(optimized_path, "PNG", optimize=True, quality=85)
            return optimized_path
        except Exception as e:
            print(f"Image optimization error: {str(e)}")
            return image_path

    def encode_image(self, image_path: str) -> str:
        if not os.path.exists(image_path):
            raise FileNotFoundError("File not found")
        
        if os.path.getsize(image_path) > 5 * 1024 * 1024:
            raise ValueError("Maximum file size is 5MB")
            
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    @lru_cache(maxsize=100)
    def analyze_chart(self, image_path: str, persona: str) -> tuple:
        try:
            if not self.validate_image(image_path):
                return "Error: Invalid or low-quality image", None

            optimized_path = self.optimize_image(image_path)
            base64_image = self.encode_image(optimized_path)
            
            persona_prompt = PERSONAS.get(persona, {}).get("prompt", "")
            full_system_prompt = f"{SYSTEM_PROMPT}\n\n{persona_prompt}"
            
            response = openai.ChatCompletion.create(
                model=ANALYSIS_MODEL,
                messages=[
                    {"role": "system", "content": full_system_prompt},
                    {"role": "user", "content": [
                        {"type": "text", "text": "Perform detailed technical analysis of this chart:"},
                        {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
                        }
                    ]}
                ],
                max_tokens=MAX_TOKENS
            )
            
            analysis_text = response.choices[0].message.content
            self.last_optimized_path = optimized_path
            return analysis_text, optimized_path
            
        except Exception as e:
            return f"Error: {str(e)}", None

def create_pdf_styles():
    styles = getSampleStyleSheet()
    styles.add(ParagraphStyle(
        'Justify',
        parent=styles['BodyText'],
        alignment=TA_JUSTIFY,
        spaceAfter=6
    ))
    styles.add(ParagraphStyle(
        'PersonaTitle',
        fontSize=14,
        textColor=colors.white,
        backColor=colors.darkblue,
        alignment=1,
        spaceAfter=12
    ))
    return styles

def generate_pdf(optimized_image_path: str, analysis_text: str, persona: str) -> str:
    try:
        # Validasyonlar
        if not optimized_image_path:
            raise ValueError("Optimized image path is missing")
            
        if not os.path.exists(optimized_image_path):
            raise FileNotFoundError(f"Optimized image not found at {optimized_image_path}")
            
        if not analysis_text or not analysis_text.strip():
            raise ValueError("Analysis text cannot be empty")

        # PDF dosya yolu oluştur
        timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
        filename = f"{PDF_DIR}/report_{timestamp}_{uuid.uuid4().hex[:6]}.pdf"
        
        # PDF içeriğini oluştur
        doc = SimpleDocTemplate(filename, pagesize=letter)
        story = []

        # Resim ekleme
        try:
            img = Image.open(optimized_image_path)
            img_width, img_height = img.size
            aspect = img_height / float(img_width)
            target_width = 400
            target_height = target_width * aspect
            
            if target_height > 600:
                target_height = 600
                target_width = target_height / aspect
                
            story.append(RLImage(optimized_image_path, width=target_width, height=target_height))
            story.append(Spacer(1, 20))
        except Exception as e:
            print(f"PDF image error: {str(e)}")
            raise

        # Persona bilgisi
        if persona in PERSONAS:
            persona_color = PERSONAS[persona]["color"]
            story.append(Paragraph(
                f"Persona: {persona}", 
                ParagraphStyle(
                    'PersonaTitle',
                    fontSize=14,
                    textColor=colors.white,
                    backColor=persona_color,
                    alignment=1
                )
            ))
            story.append(Spacer(1, 20))

        # Analiz metni
        styles = create_pdf_styles()
        analysis_style = styles['Justify']
        
        cleaned_text = analysis_text.replace('•', '•')
        for line in cleaned_text.split('\n'):
            if line.strip():
                p = Paragraph(line, analysis_style)
                story.append(p)
                story.append(Spacer(1, 12))

        # PDF'i oluştur
        doc.build(story)
        
        if not os.path.exists(filename):
            raise RuntimeError("PDF file creation failed")
            
        return filename
        
    except Exception as e:
        print(f"[PDF Generation Error] {str(e)}")
        return None

def upload_to_github(file_path: str) -> str:
    try:
        if not file_path or file_path == "None":
            return "⛔ Error: PDF generation failed in previous step"
            
        if not os.path.exists(file_path):
            return f"⛔ File not found: {file_path}"

        # GitHub yükleme işlemleri
        file_name = os.path.basename(file_path)
        url = f"https://api.github.com/repos/{REPO_OWNER}/{REPO_NAME}/contents/{PDF_DIR}/{file_name}"
        
        with open(file_path, "rb") as f:
            content = base64.b64encode(f.read()).decode("utf-8")
        
        headers = {
            "Authorization": f"token {GITHUB_TOKEN}",
            "Accept": "application/vnd.github.v3+json"
        }
        
        # Dosya varlık kontrolü
        response = requests.get(url, headers=headers)
        sha = response.json().get("sha") if response.status_code == 200 else None
        
        data = {
            "message": f"Add report {file_name}",
            "content": content,
            "branch": "main"
        }
        if sha:
            data["sha"] = sha
            
        response = requests.put(url, headers=headers, json=data)
        if response.status_code in [200, 201]:
            return f"✅ Report successfully uploaded to GitHub!\nURL: {response.json()['content']['html_url']}"
        return f"❌ GitHub upload failed ({response.status_code}): {response.text}"
        
    except Exception as e:
        return f"⚠️ Upload error: {str(e)}"

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    analyzer = ChartAnalyzer()
    
    with gr.Column():
        gr.Markdown("# 🚀 CryptoVision Pro")
        
        with gr.Row():
            with gr.Column():
                chart_input = gr.Image(type="filepath", label="Upload Chart", sources=["upload"])
                persona_dropdown = gr.Dropdown(
                    list(PERSONAS.keys()), 
                    label="Select Trading Persona", 
                    value="Neutral Trader",
                    info="Choose your trading style"
                )
                analyze_btn = gr.Button("Analyze Chart", variant="primary")
            
            with gr.Column():
                analysis_output = gr.Markdown("## Analysis Results\n*Your analysis will appear here*")
                pdf_status = gr.HTML()
    
    # Gizli bileşenler
    optimized_image_path = gr.Text(visible=False)
    pdf_file = gr.Text(visible=False)

    # İşlem Zinciri
    analyze_btn.click(
        lambda: [
            gr.Markdown(visible=False), 
            gr.HTML(value="<div class='loading-spinner'></div>"),
            None
        ],
        outputs=[analysis_output, pdf_status, pdf_file],
        queue=False
    ).then(
        analyzer.analyze_chart,
        inputs=[chart_input, persona_dropdown],
        outputs=[analysis_output, optimized_image_path]
    ).then(
        generate_pdf,
        inputs=[optimized_image_path, analysis_output, persona_dropdown],
        outputs=pdf_file
    ).then(
        upload_to_github,
        inputs=pdf_file,
        outputs=pdf_status
    )

if __name__ == "__main__":
    demo.launch()