Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,130 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
from transformers import (
|
5 |
-
AutoModelForObjectDetection,
|
6 |
-
DetrImageProcessor
|
7 |
-
)
|
8 |
from PIL import Image, ImageDraw
|
9 |
import warnings
|
10 |
import io
|
11 |
import torch
|
12 |
import base64
|
13 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from huggingface_hub import InferenceClient
|
15 |
|
16 |
-
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
17 |
-
|
18 |
warnings.filterwarnings("ignore")
|
19 |
|
20 |
# Constants
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# CPU
|
25 |
-
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count() or
|
|
|
26 |
|
27 |
-
# Model
|
28 |
-
DETECTION_MODEL = "
|
29 |
-
LLM_MODEL_NAME = "meta-llama/Llama-3
|
30 |
|
31 |
-
#
|
32 |
detection_processor = DetrImageProcessor.from_pretrained(DETECTION_MODEL)
|
33 |
detection_model = AutoModelForObjectDetection.from_pretrained(DETECTION_MODEL)
|
|
|
34 |
|
35 |
-
#
|
36 |
-
llm_client = InferenceClient(
|
37 |
-
model=LLM_MODEL_NAME,
|
38 |
-
token=ACCESS_TOKEN
|
39 |
-
)
|
40 |
-
|
41 |
-
# Optimize edilmiş sistem prompt
|
42 |
SYSTEM_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
43 |
-
You are a
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
Format response in markdown with
|
61 |
"""
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
68 |
|
69 |
-
def
|
70 |
-
|
71 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
72 |
-
|
73 |
-
# Boyutlandırma
|
74 |
-
height, width = img.shape[:2]
|
75 |
-
if width > MAX_WIDTH or height > MAX_HEIGHT:
|
76 |
-
img = cv2.resize(img, (MAX_WIDTH, MAX_HEIGHT), interpolation=cv2.INTER_AREA)
|
77 |
-
|
78 |
-
# Kontrast iyileştirme
|
79 |
-
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
|
80 |
l, a, b = cv2.split(lab)
|
81 |
-
clahe = cv2.createCLAHE(clipLimit=
|
82 |
-
limg =
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def detect_chart_elements(image):
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
with torch.no_grad():
|
90 |
outputs = detection_model(**inputs)
|
91 |
|
92 |
-
target_sizes = torch.tensor([image.size[::-1]])
|
93 |
results = detection_processor.post_process_object_detection(
|
94 |
outputs,
|
95 |
-
target_sizes=
|
96 |
-
threshold=0.
|
97 |
)[0]
|
98 |
|
99 |
elements = {
|
@@ -101,81 +132,115 @@ def detect_chart_elements(image):
|
|
101 |
'trendlines': [],
|
102 |
'patterns': [],
|
103 |
'candlesticks': [],
|
|
|
104 |
}
|
105 |
|
106 |
draw = ImageDraw.Draw(image)
|
|
|
|
|
107 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
108 |
box = [round(i, 2) for i in box.tolist()]
|
109 |
label_name = detection_model.config.id2label[label.item()]
|
110 |
-
|
111 |
-
#
|
112 |
-
draw.
|
113 |
-
draw.text((box[0], box[1]), f"{label_name} ({round(score.item(), 2)})", fill="red")
|
114 |
-
|
115 |
-
# Element kategorizasyonu
|
116 |
-
if "support" in label_name.lower() or "resistance" in label_name.lower():
|
117 |
-
elements['support_resistance'].append(label_name)
|
118 |
-
elif "trendline" in label_name.lower():
|
119 |
-
elements['trendlines'].append(label_name)
|
120 |
-
elif "pattern" in label_name.lower():
|
121 |
-
elements['patterns'].append(label_name)
|
122 |
-
elif "candlestick" in label_name.lower():
|
123 |
-
elements['candlesticks'].append(label_name)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
143 |
|
144 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
# Gradio Arayüzü
|
147 |
def respond(message, history, image):
|
148 |
if image is None:
|
149 |
-
return "Please upload a chart
|
150 |
|
151 |
try:
|
152 |
-
processed_img =
|
153 |
annotated_img, elements = detect_chart_elements(processed_img)
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
except Exception as e:
|
159 |
-
return f"
|
160 |
|
161 |
-
# Interface
|
162 |
demo = gr.ChatInterface(
|
163 |
fn=respond,
|
164 |
-
additional_inputs=[gr.Image(label="Upload Chart", type="pil")],
|
165 |
chatbot=gr.Chatbot(
|
|
|
166 |
show_copy_button=True,
|
167 |
-
layout="
|
168 |
bubble_full_width=False,
|
169 |
sanitize_html=False
|
170 |
),
|
171 |
-
title="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
theme="Nymbo/Nymbo_Theme",
|
173 |
textbox=gr.Textbox(
|
174 |
label="Ask Technical Questions",
|
175 |
-
placeholder="
|
176 |
container=False
|
177 |
)
|
178 |
)
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image, ImageDraw
|
5 |
import warnings
|
6 |
import io
|
7 |
import torch
|
8 |
import base64
|
9 |
import os
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from scipy import stats
|
12 |
+
from sklearn.cluster import DBSCAN
|
13 |
+
from transformers import (
|
14 |
+
AutoModelForObjectDetection,
|
15 |
+
DetrImageProcessor,
|
16 |
+
pipeline
|
17 |
+
)
|
18 |
from huggingface_hub import InferenceClient
|
19 |
|
|
|
|
|
20 |
warnings.filterwarnings("ignore")
|
21 |
|
22 |
# Constants
|
23 |
+
MAX_SIZE = 1024
|
24 |
+
CLAHE_CLIP = 3.0
|
25 |
+
CANNY_THRESHOLDS = (50, 200)
|
26 |
+
HOUGH_PARAMS = (50, 30, 50)
|
27 |
+
DBSCAN_EPS = 10.0
|
28 |
+
MIN_SAMPLES = 5
|
29 |
|
30 |
+
# CPU optimizations
|
31 |
+
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count() or 8)
|
32 |
+
torch.set_num_threads(os.cpu_count() or 8)
|
33 |
|
34 |
+
# Model configurations
|
35 |
+
DETECTION_MODEL = "nickmuchi/yolos-small-finance"
|
36 |
+
LLM_MODEL_NAME = "meta-llama/Meta-Llama-3-70B-Instruct"
|
37 |
|
38 |
+
# Initialize models
|
39 |
detection_processor = DetrImageProcessor.from_pretrained(DETECTION_MODEL)
|
40 |
detection_model = AutoModelForObjectDetection.from_pretrained(DETECTION_MODEL)
|
41 |
+
llm_client = InferenceClient(model=LLM_MODEL_NAME, token=os.getenv("HF_TOKEN"))
|
42 |
|
43 |
+
# Enhanced system prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
SYSTEM_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
45 |
+
You are a senior cryptocurrency trading analyst with 15 years experience. Analyze the following comprehensive chart data:
|
46 |
+
|
47 |
+
Technical Elements Detected:
|
48 |
+
{technical_analysis}
|
49 |
+
|
50 |
+
User Query: {question}
|
51 |
+
|
52 |
+
Provide detailed professional analysis covering:
|
53 |
+
1. Price Action Analysis (Trend Strength, Momentum)
|
54 |
+
2. Key Support/Resistance Zones (Cluster Analysis)
|
55 |
+
3. Volume-Weighted Price Levels
|
56 |
+
4. Pattern Recognition (Continuation/Reversal)
|
57 |
+
5. Fibonacci Retracement Levels (if applicable)
|
58 |
+
6. Market Structure Analysis
|
59 |
+
7. Risk/Reward Ratios
|
60 |
+
8. Optimal Trade Entry/Exit Strategies
|
61 |
+
|
62 |
+
Include statistical confidence levels for each analysis component. Format response in markdown with mathematical notations where appropriate.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
63 |
"""
|
64 |
|
65 |
+
def adaptive_resize(image):
|
66 |
+
height, width = image.size
|
67 |
+
scale = MAX_SIZE / max(height, width)
|
68 |
+
return image.resize((int(width*scale), int(height*scale)), Image.LANCZOS)
|
|
|
69 |
|
70 |
+
def enhance_contrast(img):
|
71 |
+
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
l, a, b = cv2.split(lab)
|
73 |
+
clahe = cv2.createCLAHE(clipLimit=CLAHE_CLIP, tileGridSize=(8,8))
|
74 |
+
limg = clahe.apply(l)
|
75 |
+
merged = cv2.merge([limg, a, b])
|
76 |
+
return cv2.cvtColor(merged, cv2.COLOR_LAB2RGB)
|
77 |
+
|
78 |
+
def detect_lines(image):
|
79 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
80 |
+
edges = cv2.Canny(gray, *CANNY_THRESHOLDS)
|
81 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi/180, *HOUGH_PARAMS)
|
82 |
+
return lines
|
83 |
+
|
84 |
+
def cluster_lines(lines):
|
85 |
+
if lines is None:
|
86 |
+
return []
|
87 |
+
points = lines.reshape(-1, 2)
|
88 |
+
clustering = DBSCAN(eps=DBSCAN_EPS, min_samples=MIN_SAMPLES).fit(points)
|
89 |
+
return clustering.labels_
|
90 |
+
|
91 |
+
def calculate_slope(line):
|
92 |
+
x1, y1, x2, y2 = line
|
93 |
+
return (y2 - y1) / (x2 - x1) if (x2 - x1) != 0 else np.inf
|
94 |
+
|
95 |
+
def detect_key_levels(image):
|
96 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
97 |
+
hist = cv2.calcHist([gray], [0], None, [256], [0,256])
|
98 |
+
peaks, _ = find_peaks(hist.flatten(), distance=10, prominence=50)
|
99 |
+
return [p for p in peaks if 10 < p < 240]
|
100 |
+
|
101 |
+
def analyze_volume_profile(image):
|
102 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
103 |
+
return cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
|
104 |
+
|
105 |
+
def detect_candlesticks(image):
|
106 |
+
edges = cv2.Canny(image, 50, 150)
|
107 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
108 |
+
candles = []
|
109 |
+
for cnt in contours:
|
110 |
+
x,y,w,h = cv2.boundingRect(cnt)
|
111 |
+
if 5 < w < 50 and 10 < h < 200:
|
112 |
+
candles.append((x,y,w,h))
|
113 |
+
return candles
|
114 |
|
115 |
def detect_chart_elements(image):
|
116 |
+
image_np = np.array(image)
|
117 |
+
enhanced = enhance_contrast(image_np)
|
118 |
+
|
119 |
+
# Deep Learning Detection
|
120 |
+
inputs = detection_processor(images=Image.fromarray(enhanced), return_tensors="pt")
|
121 |
with torch.no_grad():
|
122 |
outputs = detection_model(**inputs)
|
123 |
|
|
|
124 |
results = detection_processor.post_process_object_detection(
|
125 |
outputs,
|
126 |
+
target_sizes=torch.tensor([image.size[::-1]]),
|
127 |
+
threshold=0.85
|
128 |
)[0]
|
129 |
|
130 |
elements = {
|
|
|
132 |
'trendlines': [],
|
133 |
'patterns': [],
|
134 |
'candlesticks': [],
|
135 |
+
'indicators': []
|
136 |
}
|
137 |
|
138 |
draw = ImageDraw.Draw(image)
|
139 |
+
|
140 |
+
# Process DL detections
|
141 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
142 |
box = [round(i, 2) for i in box.tolist()]
|
143 |
label_name = detection_model.config.id2label[label.item()]
|
144 |
+
elements['patterns' if 'pattern' in label_name else 'indicators'].append(label_name)
|
145 |
+
draw.rectangle(box, outline="#FF0000", width=3)
|
146 |
+
draw.text((box[0], box[1]), f"{label_name} ({score:.2f})", fill="#FF0000")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
# Traditional CV Detection
|
149 |
+
lines = detect_lines(enhanced)
|
150 |
+
if lines is not None:
|
151 |
+
clusters = cluster_lines(lines)
|
152 |
+
for i, line in enumerate(lines):
|
153 |
+
x1, y1, x2, y2 = line[0]
|
154 |
+
slope = calculate_slope(line[0])
|
155 |
+
length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
|
156 |
+
|
157 |
+
if abs(slope) < 0.1 and length > 100:
|
158 |
+
elements['support_resistance'].append(f"Key Level at y={y1}")
|
159 |
+
draw.line((x1, y1, x2, y2), fill="#00FF00", width=3)
|
160 |
+
elif 0.1 < abs(slope) < 5:
|
161 |
+
elements['trendlines'].append(f"Trendline ({'Up' if slope < 0 else 'Down'})")
|
162 |
+
draw.line((x1, y1, x2, y2), fill="#0000FF", width=3)
|
163 |
|
164 |
+
# Volume Profile Analysis
|
165 |
+
volume_profile = analyze_volume_profile(enhanced)
|
166 |
+
contours, _ = cv2.findContours(volume_profile, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
167 |
+
for cnt in contours:
|
168 |
+
if cv2.contourArea(cnt) > 1000:
|
169 |
+
x,y,w,h = cv2.boundingRect(cnt)
|
170 |
+
elements['support_resistance'].append(f"Volume Cluster at {y+h//2}")
|
171 |
+
draw.rectangle([x,y,x+w,y+h], outline="#FFA500", width=2)
|
172 |
|
173 |
+
return image, elements
|
174 |
+
|
175 |
+
def generate_technical_report(elements):
|
176 |
+
report = []
|
177 |
+
if elements['support_resistance']:
|
178 |
+
report.append("**Key Levels**: " + ", ".join(elements['support_resistance'][:5]))
|
179 |
+
if elements['trendlines']:
|
180 |
+
report.append("**Trend Analysis**: " + ", ".join(elements['trendlines']))
|
181 |
+
if elements['patterns']:
|
182 |
+
report.append("**Chart Patterns**: " + ", ".join(elements['patterns']))
|
183 |
+
return "\n".join(report)
|
184 |
|
|
|
185 |
def respond(message, history, image):
|
186 |
if image is None:
|
187 |
+
return "Please upload a cryptocurrency chart for analysis."
|
188 |
|
189 |
try:
|
190 |
+
processed_img = adaptive_resize(image)
|
191 |
annotated_img, elements = detect_chart_elements(processed_img)
|
192 |
+
tech_report = generate_technical_report(elements)
|
193 |
+
|
194 |
+
full_prompt = SYSTEM_PROMPT.format(
|
195 |
+
technical_analysis=tech_report,
|
196 |
+
question=message
|
197 |
+
)
|
198 |
+
|
199 |
+
response = llm_client.text_generation(
|
200 |
+
full_prompt,
|
201 |
+
max_new_tokens=1500,
|
202 |
+
temperature=0.1,
|
203 |
+
repetition_penalty=1.1,
|
204 |
+
seed=42
|
205 |
+
)
|
206 |
+
|
207 |
+
img_base64 = base64.b64encode(annotated_img.tobytes()).decode('utf-8')
|
208 |
+
img_html = f'<div style="border: 2px solid #4CAF50; padding: 10px; margin-bottom: 20px;">' \
|
209 |
+
f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%;">' \
|
210 |
+
f'</div>'
|
211 |
+
|
212 |
+
return f"{img_html}\n{response.split('<|assistant|>')[-1].strip()}"
|
213 |
+
|
214 |
except Exception as e:
|
215 |
+
return f"⚠️ Advanced Analysis Error: {str(e)}"
|
216 |
|
|
|
217 |
demo = gr.ChatInterface(
|
218 |
fn=respond,
|
219 |
+
additional_inputs=[gr.Image(label="Upload Crypto Chart", type="pil")],
|
220 |
chatbot=gr.Chatbot(
|
221 |
+
avatar_images=["🤖", "📊"],
|
222 |
show_copy_button=True,
|
223 |
+
layout="bubble",
|
224 |
bubble_full_width=False,
|
225 |
sanitize_html=False
|
226 |
),
|
227 |
+
title="CryptoQuantum Analyst Pro",
|
228 |
+
description="""<div style="text-align: center; border-bottom: 3px solid #4CAF50; padding: 20px;">
|
229 |
+
<h1>🪙 CryptoQuantum Analyst Pro</h1>
|
230 |
+
<p>Advanced AI-powered Cryptocurrency Technical Analysis System</p>
|
231 |
+
<div style="display: flex; justify-content: center; gap: 15px; margin-top: 10px;">
|
232 |
+
<div style="background: #4CAF5050; padding: 10px; border-radius: 5px;">📈 Multi-Timeframe Analysis</div>
|
233 |
+
<div style="background: #4CAF5050; padding: 10px; border-radius: 5px;">🔍 Deep Pattern Recognition</div>
|
234 |
+
<div style="background: #4CAF5050; padding: 10px; border-radius: 5px;">🤖 Neural Market Forecasting</div>
|
235 |
+
</div>
|
236 |
+
</div>""",
|
237 |
theme="Nymbo/Nymbo_Theme",
|
238 |
textbox=gr.Textbox(
|
239 |
label="Ask Technical Questions",
|
240 |
+
placeholder="Enter your crypto analysis questions...",
|
241 |
container=False
|
242 |
)
|
243 |
)
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
+
demo.launch()
|