|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image, ImageDraw, ImageFont |
|
import warnings |
|
import torch |
|
import base64 |
|
import io |
|
import os |
|
import pytesseract |
|
from sklearn.cluster import DBSCAN |
|
from transformers import ( |
|
AutoModelForObjectDetection, |
|
DetrImageProcessor, |
|
pipeline |
|
) |
|
from huggingface_hub import InferenceClient |
|
import matplotlib.pyplot as plt |
|
from scipy import stats |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
MAX_SIZE = 1024 |
|
CLAHE_CLIP = 3.0 |
|
CANNY_THRESHOLDS = (50, 200) |
|
HOUGH_PARAMS = (50, 30, 50) |
|
DBSCAN_EPS = 10.0 |
|
MIN_SAMPLES = 5 |
|
|
|
|
|
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count() or 8) |
|
torch.set_num_threads(os.cpu_count() or 8) |
|
|
|
|
|
DETECTION_MODEL = "facebook/detr-resnet-50" |
|
LLM_MODEL_NAME = "meta-llama/Meta-Llama-3-70B-Instruct" |
|
OCR_CONFIG = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.$€£¥%' |
|
|
|
|
|
detection_processor = DetrImageProcessor.from_pretrained(DETECTION_MODEL) |
|
detection_model = AutoModelForObjectDetection.from_pretrained(DETECTION_MODEL) |
|
llm_client = InferenceClient(model=LLM_MODEL_NAME, token=os.getenv("HF_TOKEN")) |
|
|
|
|
|
SYSTEM_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
You are a senior cryptocurrency trading analyst with 15 years experience. Analyze the following comprehensive chart data: |
|
|
|
Technical Elements Detected: |
|
{technical_analysis} |
|
|
|
Price Axis Information: |
|
{price_info} |
|
|
|
User Query: {question} |
|
|
|
Provide detailed professional analysis covering: |
|
1. Price Action Analysis (Trend Strength, Momentum) |
|
2. Key Support/Resistance Zones (Cluster Analysis) |
|
3. Volume-Weighted Price Levels |
|
4. Pattern Recognition (Continuation/Reversal) |
|
5. Fibonacci Retracement Levels (if applicable) |
|
6. Market Structure Analysis |
|
7. Risk/Reward Ratios |
|
8. Optimal Trade Entry/Exit Strategies |
|
|
|
Include statistical confidence levels for each analysis component. Format response in markdown with mathematical notations where appropriate.<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
""" |
|
|
|
def adaptive_resize(image): |
|
height, width = image.size |
|
scale = MAX_SIZE / max(height, width) |
|
return image.resize((int(width*scale), int(height*scale)), Image.LANCZOS) |
|
|
|
def extract_price_info(image): |
|
img_np = np.array(image) |
|
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY) |
|
data = pytesseract.image_to_data(gray, config=OCR_CONFIG, output_type=pytesseract.Output.DICT) |
|
|
|
price_levels = [] |
|
price_rects = [] |
|
|
|
for i, text in enumerate(data['text']): |
|
if text.strip() and any(c.isdigit() or c in '$€£¥%' for c in text): |
|
x = data['left'][i] |
|
y = data['top'][i] |
|
w = data['width'][i] |
|
h = data['height'][i] |
|
price_rects.append((x, y, w, h)) |
|
|
|
try: |
|
price = float(text.replace('$','').replace('%','').strip()) |
|
price_levels.append((y + h//2, price)) |
|
except: |
|
continue |
|
|
|
return price_levels, price_rects |
|
|
|
def map_y_to_price(y_pos, price_levels): |
|
if not price_levels: |
|
return None |
|
|
|
y_values = [y for y, _ in price_levels] |
|
prices = [p for _, p in price_levels] |
|
|
|
try: |
|
slope, intercept, _, _, _ = stats.linregress(y_values, prices) |
|
return round(intercept + slope * y_pos, 2) |
|
except: |
|
return None |
|
|
|
def enhance_contrast(img): |
|
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) |
|
l, a, b = cv2.split(lab) |
|
clahe = cv2.createCLAHE(clipLimit=CLAHE_CLIP, tileGridSize=(8,8)) |
|
limg = clahe.apply(l) |
|
merged = cv2.merge([limg, a, b]) |
|
return cv2.cvtColor(merged, cv2.COLOR_LAB2RGB) |
|
|
|
def detect_chart_elements(image): |
|
image_np = np.array(image) |
|
enhanced = enhance_contrast(image_np) |
|
|
|
|
|
price_levels, price_rects = extract_price_info(image) |
|
|
|
|
|
inputs = detection_processor(images=Image.fromarray(enhanced), return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = detection_model(**inputs) |
|
|
|
results = detection_processor.post_process_object_detection( |
|
outputs, |
|
target_sizes=torch.tensor([image.size[::-1]]), |
|
threshold=0.85 |
|
)[0] |
|
|
|
elements = { |
|
'support_resistance': [], |
|
'trendlines': [], |
|
'patterns': [], |
|
'candlesticks': [], |
|
'indicators': [] |
|
} |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
for x, y, w, h in price_rects: |
|
draw.rectangle([x, y, x+w, y+h], outline="#4CAF50", width=1) |
|
|
|
|
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
label_name = detection_model.config.id2label[label.item()] |
|
elements['patterns' if 'pattern' in label_name else 'indicators'].append(label_name) |
|
draw.rectangle(box, outline="#FF0000", width=3) |
|
draw.text((box[0], box[1]), f"{label_name} ({score:.2f})", fill="#FF0000") |
|
|
|
|
|
lines = cv2.HoughLinesP( |
|
cv2.Canny(cv2.cvtColor(enhanced, cv2.COLOR_RGB2GRAY), *CANNY_THRESHOLDS), |
|
1, np.pi/180, *HOUGH_PARAMS |
|
) |
|
|
|
if lines is not None: |
|
for line in lines: |
|
x1, y1, x2, y2 = line[0] |
|
slope = (y2 - y1) / (x2 - x1) if (x2 - x1) != 0 else np.inf |
|
|
|
price1 = map_y_to_price(y1, price_levels) |
|
price2 = map_y_to_price(y2, price_levels) |
|
|
|
if abs(slope) < 0.1: |
|
label = f"Key Level: {price1:.2f}" if price1 else f"Y={y1}" |
|
elements['support_resistance'].append(label) |
|
draw.line((x1, y1, x2, y2), fill="#00FF00", width=3) |
|
draw.text((x1+5, y1+5), label, fill="#00FF00") |
|
else: |
|
draw.line((x1, y1, x2, y2), fill="#0000FF", width=3) |
|
elements['trendlines'].append(f"Trendline ({'Bullish' if slope < 0 else 'Bearish'})") |
|
|
|
return image, elements, price_levels |
|
|
|
def generate_technical_report(elements, price_levels): |
|
report = [] |
|
if elements['support_resistance']: |
|
report.append("**Key Levels**: " + ", ".join(elements['support_resistance'][:5])) |
|
if elements['trendlines']: |
|
report.append("**Trend Analysis**: " + ", ".join(elements['trendlines'])) |
|
if elements['patterns']: |
|
report.append("**Chart Patterns**: " + ", ".join(elements['patterns'])) |
|
|
|
if price_levels: |
|
prices = [p for _, p in price_levels] |
|
report.append(f"**Detected Price Range**: ${min(prices):.2f} - ${max(prices):.2f}") |
|
|
|
return "\n".join(report) |
|
|
|
def respond(message, history, image): |
|
|
|
if not history: |
|
return "Merhaba! Hoş geldiniz. Size nasıl yardımcı olabilirim? Crypto analiz için lütfen grafik yükleyin, genel sorularınızı direkt sorabilirsiniz." |
|
|
|
try: |
|
tech_report = "" |
|
annotated_img = None |
|
price_info = "" |
|
|
|
if image is not None: |
|
processed_img = adaptive_resize(image) |
|
annotated_img, elements, price_levels = detect_chart_elements(processed_img) |
|
tech_report = generate_technical_report(elements, price_levels) |
|
|
|
if price_levels: |
|
prices = [f"${p:.2f}" for _, p in price_levels] |
|
price_info = f"Detected Price Levels: {', '.join(prices)}" |
|
|
|
full_prompt = SYSTEM_PROMPT.format( |
|
technical_analysis=tech_report, |
|
price_info=price_info, |
|
question=message |
|
) |
|
|
|
response = llm_client.text_generation( |
|
full_prompt, |
|
max_new_tokens=1500, |
|
temperature=0.1, |
|
repetition_penalty=1.1, |
|
seed=42 |
|
) |
|
|
|
if annotated_img: |
|
img_base64 = base64.b64encode(annotated_img.tobytes()).decode('utf-8') |
|
img_html = f'<div style="border: 2px solid #4CAF50; padding: 10px; margin-bottom: 20px;">' \ |
|
f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%;">' \ |
|
f'</div>' |
|
return f"{img_html}\n{response.split('<|assistant|>')[-1].strip()}" |
|
|
|
return response.split('<|assistant|>')[-1].strip() |
|
|
|
except Exception as e: |
|
return f"⚠️ Advanced Analysis Error: {str(e)}" |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[gr.Image(label="Upload Crypto Chart", type="pil")], |
|
chatbot=gr.Chatbot( |
|
avatar_images=["user.png", "ai.png"], |
|
show_copy_button=True, |
|
layout="bubble", |
|
bubble_full_width=False, |
|
sanitize_html=False |
|
), |
|
title="CryptoQuantum Analyst Pro", |
|
description="""<div style="text-align: center; border-bottom: 3px solid #4CAF50; padding: 20px;"> |
|
<h1>🪙 CryptoQuantum Analyst Pro</h1> |
|
<p>Advanced AI-powered Cryptocurrency Technical Analysis System</p> |
|
<div style="display: flex; justify-content: center; gap: 15px; margin-top: 10px;"> |
|
<div style="background: #4CAF5050; padding: 10px; border-radius: 5px;">📈 Multi-Timeframe Analysis</div> |
|
<div style="background: #4CAF5050; padding: 10px; border-radius: 5px;">🔍 Deep Pattern Recognition</div> |
|
<div style="background: #4CAF5050; padding: 10px; border-radius: 5px;">🤖 Neural Market Forecasting</div> |
|
</div> |
|
</div>""", |
|
theme="Nymbo/Nymbo_Theme", |
|
textbox=gr.Textbox( |
|
label="Ask Technical Questions", |
|
placeholder="Enter your crypto analysis questions...", |
|
container=False |
|
) |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |