Yotam-Perlitz commited on
Commit
765f7ba
1 Parent(s): a50e6f5

revise text

Browse files

Signed-off-by: Yotam-Perlitz <[email protected]>

Files changed (1) hide show
  1. app.py +13 -6
app.py CHANGED
@@ -26,11 +26,12 @@ st.markdown(
26
  )
27
 
28
  st.markdown(
29
- "We are excited to share the BenchBench-Leaderboard, a crucial component of our comprehensive research work -- [Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation](https://arxiv.org/abs/2407.13696). "
30
- "This leaderboard is a meta-benchmark that ranks benchmarks based on their agreement with the crowd harnessing many different references. "
 
 
31
  )
32
 
33
-
34
  all_scenarios_for_aggragate = Benchmark()
35
  all_scenarios_for_aggragate.load_local_catalog()
36
  all_scenarios_for_aggragate = (
@@ -128,8 +129,14 @@ with st.expander("Add your benchmarks here!", icon="🔥"):
128
  overlap_models = set(aggregate_models).intersection(uploaded_models)
129
  if len(overlap_models) < n_models_taken_list[0]:
130
  st.warning(
131
- f"You have just {len(overlap_models)} models intersecting with the aggregate!"
132
- f"Here are some models you should run your benchmark over:{aggregate_models}"
 
 
 
 
 
 
133
  )
134
 
135
 
@@ -191,7 +198,7 @@ def run_load(
191
  scenario_whitelist=aggregate_scenario_whitelist,
192
  min_scenario_for_models_to_appear_in_agg=1
193
  if len(aggregate_scenario_whitelist) == 1
194
- else len(aggregate_scenario_whitelist) // 2,
195
  )
196
 
197
  allbench.extend(my_benchmark)
 
26
  )
27
 
28
  st.markdown(
29
+ """
30
+ This leaderboard, featured in our work -- [Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation](https://arxiv.org/abs/2407.13696),
31
+ serves as a meta-benchmark. It ranks individual benchmarks based on their agreement with an aggregated reference benchmark, which harnesses insights from numerous diverse benchmarks.
32
+ """
33
  )
34
 
 
35
  all_scenarios_for_aggragate = Benchmark()
36
  all_scenarios_for_aggragate.load_local_catalog()
37
  all_scenarios_for_aggragate = (
 
129
  overlap_models = set(aggregate_models).intersection(uploaded_models)
130
  if len(overlap_models) < n_models_taken_list[0]:
131
  st.warning(
132
+ f"You have just {len(overlap_models)} models intersecting with the aggregate!\n"
133
+ )
134
+
135
+ st.info(
136
+ f"Here are some models you could run your benchmark over:{[m for m in aggregate_models if m not in uploaded_models]}"
137
+ )
138
+ st.info(
139
+ f"Model that you have and the aggragate does not: {[m for m in uploaded_models if m not in aggregate_models]}"
140
  )
141
 
142
 
 
198
  scenario_whitelist=aggregate_scenario_whitelist,
199
  min_scenario_for_models_to_appear_in_agg=1
200
  if len(aggregate_scenario_whitelist) == 1
201
+ else len(aggregate_scenario_whitelist) // 3,
202
  )
203
 
204
  allbench.extend(my_benchmark)