Spaces:
Runtime error
Runtime error
File size: 1,584 Bytes
af0197c 444246f 8f9f40e af0197c 8f9f40e d19e0a0 8f9f40e 444246f 3526dc3 444246f d19e0a0 8f9f40e d19e0a0 49d264d 8f9f40e 49d264d 8f9f40e 444246f 3483b56 8f9f40e 3526dc3 75c52ad 444246f 8f9f40e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
import gradio as gr
from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/mGPT")
model = GPT2LMHeadModel.from_pretrained("sberbank-ai/mGPT")
#model.cuda()
#model.eval()
description = "Multilingual generation with mGPT"
title = "Generate your own example"
examples = [["""English: The vase with flowers is on the table.\nFinnish translation:""", "In May we celebrate "]]
article = (
"<p style='text-align: center'>"
"<a href='https://github.com/ai-forever/mgpt'>GitHub</a> "
"</p>"
)
device = "cuda" if torch.cuda.is_available() else "cpu"
fp16 = device != 'cpu'
def generate(prompt: str):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
out = model.generate(input_ids,
min_length=100,
max_length=200,
top_p=0.8,
top_k=0,
no_repeat_ngram_size=5
)
generated_text = list(map(tokenizer.decode, out))[0]
return generated_text
interface = gr.Interface.load("huggingface/sberbank-ai/mGPT",
description=description,
examples=examples,
fn=generate,
inputs="text",
outputs='text',
thumbnail = 'https://habrastorage.org/r/w1560/getpro/habr/upload_files/26a/fa1/3e1/26afa13e1d1a56f54c7b0356761af7b8.png',
theme = "peach",
article = article,
cache_examples=True
)
interface.launch(enable_queue=True) |