Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import duckdb
|
5 |
+
from huggingface_hub import get_token
|
6 |
+
|
7 |
+
model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m-v1.5")
|
8 |
+
|
9 |
+
def similarity_search(
|
10 |
+
query: str,
|
11 |
+
k: int = 5,
|
12 |
+
dataset_name: str = "smol-blueprint-project/hf-blogs-text-embeddings",
|
13 |
+
embedding_column: str = "embedding",
|
14 |
+
):
|
15 |
+
# Use same model as used for indexing
|
16 |
+
query_vector = model.encode(query)
|
17 |
+
embedding_dim = model.get_sentence_embedding_dimension()
|
18 |
+
|
19 |
+
sql = f"""
|
20 |
+
SELECT
|
21 |
+
title,
|
22 |
+
author,
|
23 |
+
date,
|
24 |
+
local,
|
25 |
+
tags,
|
26 |
+
URL,
|
27 |
+
chunk,
|
28 |
+
array_cosine_distance(
|
29 |
+
{embedding_column}::float[{embedding_dim}],
|
30 |
+
{query_vector.tolist()}::float[{embedding_dim}]
|
31 |
+
) as distance
|
32 |
+
FROM 'hf://datasets/{dataset_name}/**/*.parquet'
|
33 |
+
ORDER BY distance
|
34 |
+
LIMIT {k}
|
35 |
+
"""
|
36 |
+
|
37 |
+
return duckdb.sql(sql).to_df()
|
38 |
+
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
query = gr.Textbox(label="Query")
|
41 |
+
k = gr.Slider(1, 10, value=5, label="Number of results")
|
42 |
+
btn = gr.Button("Search")
|
43 |
+
results = gr.Dataframe(headers=["title", "url", "content", "distance"])
|
44 |
+
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
|
45 |
+
|
46 |
+
|
47 |
+
demo.launch()
|