import json from functools import cache from pickle import load import gradio as gr import matplotlib.pyplot as plt import numpy as np import PIL.Image as Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file from msma import ScoreFlow, build_model_from_pickle, config_presets @cache def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"): scorenet = build_model_from_pickle(preset=preset) model = ScoreFlow(scorenet, num_flows=8, device=device) model.flow.load_state_dict(torch.load(f"{modeldir}/comb/{preset}/flow.pt")) return model @cache def load_model_from_hub(preset, device): scorenet = build_model_from_pickle(preset) hf_config = hf_hub_download( repo_id="ahsanMah/localizing-edm", subfolder=preset, filename="config.json", cache_dir="/tmp/", ) with open(hf_config, "rb") as f: model_params = json.load(f) print("Loaded:", model_params) hf_checkpoint = hf_hub_download( repo_id="ahsanMah/localizing-edm", subfolder=preset, filename="model.safetensors", cache_dir="/tmp/", ) model = ScoreFlow(scorenet, device=device, **model_params["PatchFlow"]) model.load_state_dict(load_file(hf_checkpoint), strict=True) return model @cache def load_reference_scores(model_dir): with np.load(f"{model_dir}/refscores.npz", "rb") as f: ref_nll = f["arr_0"] return ref_nll def compute_gmm_likelihood(x_score, model_dir): with open(f"{model_dir}/gmm.pkl", "rb") as f: clf = load(f) nll = -clf.score(x_score) ref_nll = load_reference_scores(model_dir) percentile = (ref_nll < nll).mean() * 100 return nll, percentile, ref_nll def plot_against_reference(nll, ref_nll): fig, ax = plt.subplots() ax.hist(ref_nll, label="Reference Scores") ax.axvline(nll, label="Image Score", c="red", ls="--") plt.legend() fig.tight_layout() return fig def plot_heatmap(img: Image, heatmap: np.array): fig, ax = plt.subplots() cmap = plt.get_cmap("gist_heat") h = -heatmap[0, 0].copy() qmin, qmax = np.quantile(h, 0.8), np.quantile(h, 0.999) h = np.clip(h, a_min=qmin, a_max=qmax) h = (h - h.min()) / (h.max() - h.min()) h = cmap(h, bytes=True)[:, :, :3] h = Image.fromarray(h).resize(img.size, resample=Image.Resampling.BILINEAR) im = Image.blend(img, h, alpha=0.6) # im = ax.imshow(np.array(im)) # # fig.colorbar(im) # # plt.grid(False) # # plt.axis("off") # fig.tight_layout() return im def run_inference(input_img, preset="edm2-img64-s-fid", load_from_hub=False): device = "cuda" if torch.cuda.is_available() else "cpu" # img = center_crop_imagenet(64, img) input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS) with torch.inference_mode(): img = np.array(input_img) img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0) img = img.float().to(device) if load_from_hub: model = load_model_from_hub(preset=preset, device=device) else: model = load_model(modeldir="models", preset=preset, device=device) img_likelihood = model(img).cpu().numpy() img = torch.nn.functional.interpolate(img, size=64, mode="bilinear") x = model.scorenet(img) x = x.square().sum(dim=(2, 3, 4)) ** 0.5 nll, pct, ref_nll = compute_gmm_likelihood( x.cpu(), model_dir=f"models/{preset}" ) outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile" histplot = plot_against_reference(nll, ref_nll) heatmapplot = plot_heatmap(input_img, img_likelihood) return outstr, heatmapplot, histplot demo = gr.Interface( fn=run_inference, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Dropdown( choices=config_presets.keys(), label="Score Model Preset", info="The preset of the underlying score estimator. These are the EDM2 diffusion models from Karras et.al.", ), gr.Checkbox( label="HuggingFace Hub", value=True, info="Load a pretrained model from HuggingFace. Uncheck to use a model from `models` directory.", ), ], outputs=[ "text", gr.Image(label="Anomaly Heatmap", min_width=64), gr.Plot(label="Comparing to Imagenette"), ], examples=[ ["samples/duckelephant.jpeg", "edm2-img64-s-fid", True], ["samples/sharkhorse.jpeg", "edm2-img64-s-fid", True], ["samples/goldfish.jpeg", "edm2-img64-s-fid", True], ], ) if __name__ == "__main__": demo.launch()