Spaces:
Runtime error
Runtime error
from functools import cache | |
from pickle import load | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import PIL.Image as Image | |
import torch | |
from msma import ScoreFlow, config_presets | |
def load_model(modeldir, preset="edm2-img64-s-fid", device='cpu', outdir=None): | |
model = ScoreFlow(preset, device=device) | |
model.flow.load_state_dict(torch.load(f"{modeldir}/{preset}/flow.pt")) | |
return model | |
def load_reference_scores(model_dir): | |
with np.load(f"{model_dir}/refscores.npz", "rb") as f: | |
ref_nll = f["arr_0"] | |
return ref_nll | |
def compute_gmm_likelihood(x_score, model_dir): | |
with open(f"{model_dir}/gmm.pkl", "rb") as f: | |
clf = load(f) | |
nll = -clf.score(x_score) | |
ref_nll = load_reference_scores(model_dir) | |
percentile = (ref_nll < nll).mean() * 100 | |
return nll, percentile, ref_nll | |
def plot_against_reference(nll, ref_nll): | |
fig, ax = plt.subplots() | |
ax.hist(ref_nll, label="Reference Scores") | |
ax.axvline(nll, label='Image Score', c='red', ls="--") | |
plt.legend() | |
fig.tight_layout() | |
return fig | |
def plot_heatmap(img: Image, heatmap: np.array): | |
fig, ax = plt.subplots() | |
cmap = plt.get_cmap("gist_heat") | |
h = heatmap[0,0].copy() | |
qmin, qmax = np.quantile(h, 0.5), np.quantile(h, 0.999) | |
h = np.clip(h, a_min=qmin, a_max=qmax) | |
h = (h-h.min()) / (h.max() - h.min()) | |
h = cmap(h, bytes=True)[:,:,:3] | |
h = Image.fromarray(h).resize(img.size, resample=Image.Resampling.BILINEAR) | |
im = Image.blend(img, h, alpha=0.6) | |
im = ax.imshow(np.array(im)) | |
# fig.colorbar(im) | |
# plt.grid(False) | |
# plt.axis("off") | |
fig.tight_layout() | |
return fig | |
def run_inference(input_img, preset="edm2-img64-s-fid", device="cuda"): | |
# img = center_crop_imagenet(64, img) | |
input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS) | |
with torch.inference_mode(): | |
img = np.array(input_img) | |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0) | |
img = img.float().to(device) | |
model = load_model(modeldir='models', preset=preset, device=device) | |
img_likelihood = model(img).cpu().numpy() | |
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear') | |
x = model.scorenet(img) | |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5 | |
nll, pct, ref_nll = compute_gmm_likelihood(x.cpu(), model_dir=f"models/{preset}") | |
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile" | |
histplot = plot_against_reference(nll, ref_nll) | |
heatmapplot = plot_heatmap(input_img, img_likelihood) | |
return outstr, heatmapplot, histplot | |
demo = gr.Interface( | |
fn=run_inference, | |
inputs=[gr.Image(type='pil', label="Input Image")], | |
outputs=["text", | |
gr.Plot(label="Anomaly Heatmap"), | |
gr.Plot(label="Comparing to Imagenette"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |