ahsanMah's picture
Added tensorboard logging
5e7e8e6
raw
history blame
12.7 kB
import os
import pickle
from functools import partial
from pickle import dump, load
import click
import numpy as np
import PIL.Image
import torch
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from torch.utils.data import Subset
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import dnnlib
from dataset import ImageFolderDataset
from flowutils import PatchFlow
model_root = "https://nvlabs-fi-cdn.nvidia.com/edm2/posthoc-reconstructions"
config_presets = {
"edm2-img64-s-fid": f"{model_root}/edm2-img64-s-1073741-0.075.pkl", # fid = 1.58
"edm2-img64-m-fid": f"{model_root}/edm2-img64-m-2147483-0.060.pkl", # fid = 1.43
"edm2-img64-l-fid": f"{model_root}/edm2-img64-l-1073741-0.040.pkl", # fid = 1.33
}
class StandardRGBEncoder:
def __init__(self):
super().__init__()
def encode(self, x): # raw pixels => final pixels
return x.to(torch.float32) / 127.5 - 1
def decode(self, x): # final latents => raw pixels
return (x.to(torch.float32) * 127.5 + 128).clip(0, 255).to(torch.uint8)
class EDMScorer(torch.nn.Module):
def __init__(
self,
net,
stop_ratio=0.8, # Maximum ratio of noise levels to compute
num_steps=10, # Number of noise levels to evaluate.
use_fp16=False, # Execute the underlying model at FP16 precision?
sigma_min=0.002, # Minimum supported noise level.
sigma_max=80, # Maximum supported noise level.
sigma_data=0.5, # Expected standard deviation of the training data.
rho=7, # Time step discretization.
device=torch.device("cpu"), # Device to use.
):
super().__init__()
self.use_fp16 = use_fp16
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.sigma_data = sigma_data
self.net = net.eval()
self.encoder = StandardRGBEncoder()
# Adjust noise levels based on how far we want to accumulate
self.sigma_min = 1e-1
self.sigma_max = sigma_max * stop_ratio
step_indices = torch.arange(num_steps, dtype=torch.float64, device=device)
t_steps = (
self.sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (self.sigma_min ** (1 / rho) - self.sigma_max ** (1 / rho))
) ** rho
# print("Using steps:", t_steps)
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
@torch.inference_mode()
def forward(
self,
x,
force_fp32=False,
):
x = self.encoder.encode(x).to(torch.float32)
batch_scores = []
for sigma in self.sigma_steps:
xhat = self.net(x, sigma, force_fp32=force_fp32)
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
score = xhat - (c_skip * x)
batch_scores.append(score)
batch_scores = torch.stack(batch_scores, axis=1)
return batch_scores
class ScoreFlow(torch.nn.Module):
def __init__(
self,
preset,
device="cpu",
):
super().__init__()
scorenet = build_model(preset)
h = w = scorenet.net.img_resolution
c = scorenet.net.img_channels
num_sigmas = len(scorenet.sigma_steps)
self.flow = PatchFlow((num_sigmas, c, h, w))
self.flow = self.flow.to(device)
self.scorenet = scorenet.to(device).requires_grad_(False)
self.flow.init_weights()
def forward(self, x, **score_kwargs):
x_scores = self.scorenet(x, **score_kwargs)
return self.flow(x_scores)
def build_model(preset="edm2-img64-s-fid", device="cpu"):
netpath = config_presets[preset]
with dnnlib.util.open_url(netpath, verbose=1) as f:
data = pickle.load(f)
net = data["ema"]
model = EDMScorer(net, num_steps=20).to(device)
return model
def quantile_scorer(gmm, X, y=None):
return np.quantile(gmm.score_samples(X), 0.1)
def train_gmm(score_path, outdir, grid_search=False):
X = torch.load(score_path)
gm = GaussianMixture(
n_components=7, init_params="kmeans", covariance_type="full", max_iter=100000
)
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
if grid_search:
param_grid = dict(
GMM__n_components=range(2, 11, 1),
)
grid = GridSearchCV(
estimator=clf,
param_grid=param_grid,
cv=5,
n_jobs=2,
verbose=1,
scoring=quantile_scorer,
)
grid_result = grid.fit(X)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
print("-----" * 15)
means = grid_result.cv_results_["mean_test_score"]
stds = grid_result.cv_results_["std_test_score"]
params = grid_result.cv_results_["params"]
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
clf = grid.best_estimator_
clf.fit(X)
inlier_nll = -clf.score_samples(X)
os.makedirs(outdir, exist_ok=True)
with open(f"{outdir}/refscores.npz", "wb") as f:
np.savez_compressed(f, inlier_nll)
with open(f"{outdir}/gmm.pkl", "wb") as f:
dump(clf, f, protocol=5)
def compute_gmm_likelihood(x_score, gmmdir):
with open(f"{gmmdir}/gmm.pkl", "rb") as f:
clf = load(f)
nll = -clf.score_samples(x_score)
with np.load(f"{gmmdir}/refscores.npz", "rb") as f:
ref_nll = f["arr_0"]
percentile = (ref_nll < nll).mean()
return nll, percentile
def cache_score_norms(preset, dataset_path, outdir, device="cpu"):
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
refimg, reflabel = dsobj[0]
print(f"Loading dataset from {dataset_path}")
print(
f"Number of Samples: {len(dsobj)} - shape: {refimg.shape}, dtype: {refimg.dtype}, labels {reflabel}"
)
dsloader = torch.utils.data.DataLoader(
dsobj, batch_size=48, num_workers=4, prefetch_factor=2
)
model = build_model(preset=preset, device=device)
score_norms = []
for x, _ in tqdm(dsloader):
s = model(x.to(device))
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
score_norms.append(s.cpu())
score_norms = torch.cat(score_norms, dim=0)
os.makedirs(f"{outdir}/{preset}/", exist_ok=True)
with open(f"{outdir}/{preset}/imagenette_score_norms.pt", "wb") as f:
torch.save(score_norms, f)
print(f"Computed score norms for {score_norms.shape[0]} samples")
def train_flow(dataset_path, preset, outdir, epochs=10, device="cuda"):
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
refimg, reflabel = dsobj[0]
print(f"Loaded {len(dsobj)} samples from {dataset_path}")
# Subset of training dataset
val_ratio = 0.1
train_len = int((1 - val_ratio) * len(dsobj))
val_len = len(dsobj) - train_len
print(
f"Generating train/test split with ratio={val_ratio} -> {train_len}/{val_len}..."
)
train_ds = Subset(dsobj, range(train_len))
val_ds = Subset(dsobj, range(train_len, train_len + val_len))
trainiter = torch.utils.data.DataLoader(
train_ds, batch_size=64, num_workers=4, prefetch_factor=2
)
testiter = torch.utils.data.DataLoader(
val_ds, batch_size=128, num_workers=4, prefetch_factor=2
)
model = ScoreFlow(preset, device=device)
opt = torch.optim.AdamW(model.flow.parameters(), lr=3e-4, weight_decay=1e-5)
train_step = partial(
PatchFlow.stochastic_step,
flow_model=model.flow,
opt=opt,
train=True,
n_patches=128,
device=device,
)
eval_step = partial(
PatchFlow.stochastic_step,
flow_model=model.flow,
train=False,
n_patches=256,
device=device,
)
experiment_dir = f"{outdir}/{preset}"
os.makedirs(experiment_dir, exist_ok=True)
writer = SummaryWriter(f"{experiment_dir}/logs/")
# totaliters = int(epochs * train_len)
pbar = tqdm(range(epochs), desc="Train Loss: ? - Val Loss: ?")
step = 0
for e in pbar:
for x, _ in trainiter:
x = x.to(device)
scores = model.scorenet(x)
if step == 0:
with torch.inference_mode():
val_loss = eval_step(scores, x)
train_loss = train_step(scores, x)
if (step + 1) % 10 == 0:
prev_val_loss = val_loss
val_loss = 0.0
with torch.inference_mode():
for i, (x, _) in enumerate(testiter):
x = x.to(device)
scores = model.scorenet(x)
val_loss += eval_step(scores, x)
break
val_loss /= i + 1
writer.add_scalar("loss/val", train_loss, step)
if val_loss < prev_val_loss:
torch.save(model.flow.state_dict(), f"{experiment_dir}/flow.pt")
writer.add_scalar("loss/train", train_loss, step)
pbar.set_description(
f"Step: {step:d} - Train: {train_loss:.3f} - Val: {val_loss:.3f}"
)
step += 1
# torch.save(model.flow.state_dict(), f"{experiment_dir}/flow.pt")
writer.close()
@torch.inference_mode
def test_runner(device="cpu"):
# f = "doge.jpg"
f = "goldfish.JPEG"
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
image = np.array(image)
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
x = torch.from_numpy(image).unsqueeze(0).to(device)
model = build_model(device=device)
scores = model(x)
return scores
def test_flow_runner(preset, device="cpu", load_weights=None):
# f = "doge.jpg"
f = "goldfish.JPEG"
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
image = np.array(image)
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
x = torch.from_numpy(image).unsqueeze(0).to(device)
score_flow = ScoreFlow(preset, device=device)
if load_weights is not None:
score_flow.flow.load_state_dict(torch.load(load_weights))
heatmap = score_flow(x)
print(heatmap.shape)
heatmap = score_flow(x).detach().cpu().numpy()
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) * 255
im = PIL.Image.fromarray(heatmap[0, 0])
im.convert("RGB").save(
"heatmap.png",
)
return
@click.command()
# Main options.
@click.option(
"--run",
help="Which function to run",
type=click.Choice(
["cache-scores", "train-flow", "train-gmm"], case_sensitive=False
),
)
@click.option(
"--outdir",
help="Where to load/save the results",
metavar="DIR",
type=str,
required=True,
)
@click.option(
"--preset",
help="Configuration preset",
metavar="STR",
type=str,
default="edm2-img64-s-fid",
show_default=True,
)
@click.option(
"--data", help="Path to the dataset", metavar="ZIP|DIR", type=str, default=None
)
def cmdline(run, outdir, **opts):
device = "cuda" if torch.cuda.is_available() else "cpu"
preset = opts["preset"]
dataset_path = opts["data"]
if run in ["cache-scores", "train-flow"]:
assert opts["data"] is not None, "Provide path to dataset"
if run == "cache-scores":
cache_score_norms(
preset=preset, dataset_path=dataset_path, outdir=outdir, device=device
)
if run == "train-gmm":
train_gmm(
score_path=f"{outdir}/{preset}/imagenette_score_norms.pt",
outdir=f"{outdir}/{preset}",
grid_search=True,
)
if run == "train-flow":
train_flow(dataset_path, outdir=outdir, preset=preset, device=device)
test_flow_runner(preset, device=device, load_weights=f"{outdir}/{preset}/flow.pt")
# train_flow(imagenette_path, preset, device)
# cache_score_norms(
# preset=preset,
# dataset_path="/GROND_STOR/amahmood/datasets/img64/",
# device="cuda",
# )
# train_gmm(
# f"out/msma/{preset}_imagenette_score_norms.pt", outdir=f"out/msma/{preset}"
# )
# s = test_runner(device=device)
# s = s.square().sum(dim=(2, 3, 4)) ** 0.5
# s = s.to("cpu").numpy()
# nll, pct = compute_gmm_likelihood(s, gmmdir=f"out/msma/{preset}/")
# print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
if __name__ == "__main__":
cmdline()