localizing-anomalies / flowutils.py
ahsanMah's picture
saving configs and making models easier to load
6e569fe
raw
history blame
11.7 kB
import pdb
import normflows as nf
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
from normflows.distributions import BaseDistribution
def sanitize_locals(args_dict, ignore_keys=None):
if ignore_keys is None:
ignore_keys = []
if not isinstance(ignore_keys, list):
ignore_keys = [ignore_keys]
_dict = args_dict.copy()
_dict.pop("self")
class_name = _dict.pop("__class__").__name__
class_params = {k: v for k, v in _dict.items() if k not in ignore_keys}
return {class_name: class_params}
def build_flows(
latent_size, num_flows=4, num_blocks_per_flow=2, hidden_units=128, context_size=64
):
# Define flows
flows = []
flows.append(
nf.flows.MaskedAffineAutoregressive(
latent_size,
hidden_features=hidden_units,
num_blocks=num_blocks_per_flow,
context_features=context_size,
)
)
for i in range(num_flows):
flows += [
nf.flows.CoupledRationalQuadraticSpline(
latent_size,
num_blocks=num_blocks_per_flow,
num_hidden_channels=hidden_units,
num_context_channels=context_size,
)
]
flows += [nf.flows.LULinearPermute(latent_size)]
# Set base distribution
context_encoder = nn.Sequential(
nn.Linear(context_size, context_size),
nn.SiLU(),
# output mean and scales for K=latent_size dimensions
nn.Linear(context_size, latent_size * 2),
)
q0 = ConditionalDiagGaussian(latent_size, context_encoder)
# Construct flow model
model = nf.ConditionalNormalizingFlow(q0, flows)
return model
class ConditionalDiagGaussian(BaseDistribution):
"""
Conditional multivariate Gaussian distribution with diagonal
covariance matrix, parameters are obtained by a context encoder,
context meaning the variable to condition on
"""
def __init__(self, shape, context_encoder):
"""Constructor
Args:
shape: Tuple with shape of data, if int shape has one dimension
context_encoder: Computes mean and log of the standard deviation
of the Gaussian, mean is the first half of the last dimension
of the encoder output, log of the standard deviation the second
half
"""
super().__init__()
if isinstance(shape, int):
shape = (shape,)
if isinstance(shape, list):
shape = tuple(shape)
self.shape = shape
self.n_dim = len(shape)
self.d = np.prod(shape)
self.context_encoder = context_encoder
def forward(self, num_samples=1, context=None):
encoder_output = self.context_encoder(context)
split_ind = encoder_output.shape[-1] // 2
mean = encoder_output[..., :split_ind]
log_scale = encoder_output[..., split_ind:]
eps = torch.randn(
(num_samples,) + self.shape, dtype=mean.dtype, device=mean.device
)
z = mean + torch.exp(log_scale) * eps
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(
log_scale + 0.5 * torch.pow(eps, 2), list(range(1, self.n_dim + 1))
)
return z, log_p
def log_prob(self, z, context=None):
encoder_output = self.context_encoder(context)
split_ind = encoder_output.shape[-1] // 2
mean = encoder_output[..., :split_ind]
log_scale = encoder_output[..., split_ind:]
log_p = -0.5 * self.d * np.log(2 * np.pi) - torch.sum(
log_scale + 0.5 * torch.pow((z - mean) / torch.exp(log_scale), 2),
list(range(1, self.n_dim + 1)),
)
return log_p
def get_emb(sin_inp):
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return torch.flatten(emb, -2, -1)
class PositionalEncoding2D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding2D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 4) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.register_buffer("cached_penc", None, persistent=False)
def forward(self, tensor):
"""
:param tensor: A 4d tensor of size (batch_size, x, y, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, ch)
"""
if len(tensor.shape) != 4:
raise RuntimeError("The input tensor has to be 4d!")
if (
self.cached_penc is not None
and self.cached_penc.shape[:2] == tensor.shape[1:3]
):
return self.cached_penc
self.cached_penc = None
batch_size, orig_ch, x, y = tensor.shape
pos_x = torch.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
pos_y = torch.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1)
emb_y = get_emb(sin_inp_y)
emb = torch.zeros(
(x, y, self.channels * 2),
device=tensor.device,
dtype=tensor.dtype,
)
emb[:, :, : self.channels] = emb_x
emb[:, :, self.channels : 2 * self.channels] = emb_y
self.cached_penc = emb
return self.cached_penc
class SpatialNormer(nn.Module):
def __init__(
self,
in_channels, # channels will be number of sigma scales in input
kernel_size=3,
stride=2,
padding=1,
):
"""
Note that the convolution will reduce the channel dimension
So (b, num_sigmas, c, h, w) -> (b, num_sigmas, new_h , new_w)
"""
super().__init__()
self.conv = nn.Conv3d(
in_channels,
in_channels,
kernel_size,
# This is the real trick that ensures each
# sigma dimension is normed separately
groups=in_channels,
stride=(1, stride, stride),
padding=(0, padding, padding),
bias=False,
)
self.conv.weight.data.fill_(1) # all ones weights
self.conv.weight.requires_grad = False # freeze weights
@torch.no_grad()
def forward(self, x):
return self.conv(x.square()).pow_(0.5).squeeze(2)
class PatchFlow(torch.nn.Module):
def __init__(
self,
input_size,
patch_size=3,
context_embedding_size=128,
num_flows=4,
num_blocks_per_flow=2,
hidden_units=128,
):
super().__init__()
self.config = sanitize_locals(locals(), ignore_keys=input_size)
num_sigmas, c, h, w = input_size
self.local_pooler = SpatialNormer(
in_channels=num_sigmas, kernel_size=patch_size
)
self.flows = build_flows(
latent_size=num_sigmas,
context_size=context_embedding_size,
num_flows=num_flows,
num_blocks_per_flow=num_blocks_per_flow,
hidden_units=hidden_units,
)
self.position_encoding = PositionalEncoding2D(channels=context_embedding_size)
# caching pos encs
_, _, ctx_h, ctw_w = self.local_pooler(
torch.empty((1, num_sigmas, c, h, w))
).shape
self.position_encoding(torch.empty(1, 1, ctx_h, ctw_w))
assert self.position_encoding.cached_penc.shape[-1] == context_embedding_size
def init_weights(self):
# Initialize weights with Xavier
linear_modules = list(
filter(lambda m: isinstance(m, nn.Linear), self.flows.modules())
)
total = len(linear_modules)
for idx, m in enumerate(linear_modules):
# Last layer gets init w/ zeros
if idx == total - 1:
nn.init.zeros_(m.weight.data)
else:
nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias.data)
def forward(self, x, chunk_size=32):
b, s, c, h, w = x.shape
x_norm = self.local_pooler(x)
_, _, new_h, new_w = x_norm.shape
context = self.position_encoding(x_norm)
# (Patches * batch) x channels
local_ctx = rearrange(context, "h w c -> (h w) c")
patches = rearrange(x_norm, "b c h w -> (h w) b c")
nchunks = (patches.shape[0] + chunk_size - 1) // chunk_size
patches = patches.chunk(nchunks, dim=0)
ctx_chunks = local_ctx.chunk(nchunks, dim=0)
patch_logpx = []
# gc = repeat(global_ctx, "b c -> (n b) c", n=self.patch_batch_size)
for p, ctx in zip(patches, ctx_chunks):
# num patches in chunk (<= chunk_size)
n = p.shape[0]
ctx = repeat(ctx, "n c -> (n b) c", b=b)
p = rearrange(p, "n b c -> (n b) c")
# Compute log densities for each patch
logpx = self.flows.log_prob(p, context=ctx)
logpx = rearrange(logpx, "(n b) -> n b", n=n, b=b)
patch_logpx.append(logpx)
# Convert back to image
logpx = torch.cat(patch_logpx, dim=0)
logpx = rearrange(logpx, "(h w) b -> b 1 h w", b=b, h=new_h, w=new_w)
return logpx.contiguous()
@staticmethod
def stochastic_step(
scores, x_batch, flow_model, opt=None, train=False, n_patches=32, device="cpu"
):
if train:
flow_model.train()
opt.zero_grad(set_to_none=True)
else:
flow_model.eval()
patches, context = PatchFlow.get_random_patches(
scores, x_batch, flow_model, n_patches
)
patch_feature = patches.to(device)
context_vector = context.to(device)
patch_feature = rearrange(patch_feature, "n b c -> (n b) c")
context_vector = rearrange(context_vector, "n b c -> (n b) c")
# global_pooled_image = flow_model.global_pooler(x_batch)
# global_context = flow_model.global_attention(global_pooled_image)
# gctx = repeat(global_context, "b c -> (n b) c", n=n_patches)
# # Concatenate global context to local context
# context_vector = torch.cat([context_vector, gctx], dim=1)
# z, ldj = flow_model.flows.inverse_and_log_det(
# patch_feature,
# context=context_vector,
# )
loss = flow_model.flows.forward_kld(patch_feature, context_vector)
loss *= n_patches
if train:
loss.backward()
opt.step()
return loss.item() / n_patches
@staticmethod
def get_random_patches(scores, x_batch, flow_model, n_patches):
b = scores.shape[0]
h = flow_model.local_pooler(scores)
patches = rearrange(h, "b c h w -> (h w) b c")
context = flow_model.position_encoding(h)
context = rearrange(context, "h w c -> (h w) c")
context = repeat(context, "n c -> n b c", b=b)
# conserve gpu memory
patches = patches.cpu()
context = context.cpu()
# Get random patches
total_patches = patches.shape[0]
shuffled_idx = torch.randperm(total_patches)
rand_idx_batch = shuffled_idx[:n_patches]
return patches[rand_idx_batch], context[rand_idx_batch]