Spaces:
Runtime error
Runtime error
File size: 8,562 Bytes
b1602ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import pdb
import normflows as nf
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
def build_flows(
latent_size, num_flows=4, num_blocks=2, hidden_units=128, context_size=64
):
# Define flows
flows = []
for i in range(num_flows):
flows += [
nf.flows.CoupledRationalQuadraticSpline(
latent_size,
num_blocks=num_blocks,
num_hidden_channels=hidden_units,
num_context_channels=context_size,
)
]
flows += [nf.flows.LULinearPermute(latent_size)]
# Set base distribution
q0 = nf.distributions.DiagGaussian(latent_size, trainable=True)
# Construct flow model
model = nf.ConditionalNormalizingFlow(q0, flows)
return model
def get_emb(sin_inp):
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return torch.flatten(emb, -2, -1)
class PositionalEncoding2D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding2D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 4) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.register_buffer("cached_penc", None, persistent=False)
def forward(self, tensor):
"""
:param tensor: A 4d tensor of size (batch_size, x, y, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, ch)
"""
if len(tensor.shape) != 4:
raise RuntimeError("The input tensor has to be 4d!")
if (
self.cached_penc is not None
and self.cached_penc.shape[:2] == tensor.shape[1:3]
):
return self.cached_penc
self.cached_penc = None
batch_size, orig_ch, x, y = tensor.shape
pos_x = torch.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
pos_y = torch.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1)
emb_y = get_emb(sin_inp_y)
emb = torch.zeros(
(x, y, self.channels * 2),
device=tensor.device,
dtype=tensor.dtype,
)
emb[:, :, : self.channels] = emb_x
emb[:, :, self.channels : 2 * self.channels] = emb_y
self.cached_penc = emb
return self.cached_penc
class SpatialNormer(nn.Module):
def __init__(
self,
in_channels, # channels will be number of sigma scales in input
kernel_size=3,
stride=2,
padding=1,
):
"""
Note that the convolution will reduce the channel dimension
So (b, num_sigmas, c, h, w) -> (b, num_sigmas, new_h , new_w)
"""
super().__init__()
self.conv = nn.Conv3d(
in_channels,
in_channels,
kernel_size,
# This is the real trick that ensures each
# sigma dimension is normed separately
groups=in_channels,
stride=(1, stride, stride),
padding=(0, padding, padding),
bias=False,
)
self.conv.weight.data.fill_(1) # all ones weights
self.conv.weight.requires_grad = False # freeze weights
@torch.no_grad()
def forward(self, x):
return self.conv(x.square()).pow_(0.5).squeeze(2)
class PatchFlow(torch.nn.Module):
def __init__(
self,
input_size,
patch_size=3,
context_embedding_size=128,
num_blocks=2,
hidden_units=128,
):
super().__init__()
num_sigmas, c, h, w = input_size
self.local_pooler = SpatialNormer(
in_channels=num_sigmas, kernel_size=patch_size
)
self.flow = build_flows(
latent_size=num_sigmas, context_size=context_embedding_size
)
self.position_encoding = PositionalEncoding2D(channels=context_embedding_size)
# caching pos encs
_, _, ctx_h, ctw_w = self.local_pooler(
torch.empty((1, num_sigmas, c, h, w))
).shape
self.position_encoding(torch.empty(1, 1, ctx_h, ctw_w))
assert self.position_encoding.cached_penc.shape[-1] == context_embedding_size
def init_weights(self):
# Initialize weights with Xavier
linear_modules = list(
filter(lambda m: isinstance(m, nn.Linear), self.flow.modules())
)
total = len(linear_modules)
for idx, m in enumerate(linear_modules):
# Last layer gets init w/ zeros
if idx == total - 1:
nn.init.zeros_(m.weight.data)
else:
nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias.data)
def forward(self, x, chunk_size=32):
b, s, c, h, w = x.shape
x_norm = self.local_pooler(x)
_, _, new_h, new_w = x_norm.shape
context = self.position_encoding(x_norm)
# (Patches * batch) x channels
local_ctx = rearrange(context, "h w c -> (h w) c")
patches = rearrange(x_norm, "b c h w -> (h w) b c")
nchunks = (patches.shape[0] + chunk_size - 1) // chunk_size
patches = patches.chunk(nchunks, dim=0)
ctx_chunks = local_ctx.chunk(nchunks, dim=0)
patch_logpx = []
# gc = repeat(global_ctx, "b c -> (n b) c", n=self.patch_batch_size)
for p, ctx in zip(patches, ctx_chunks):
# num patches in chunk (<= chunk_size)
n = p.shape[0]
ctx = repeat(ctx, "n c -> (n b) c", b=b)
p = rearrange(p, "n b c -> (n b) c")
# Compute log densities for each patch
logpx = self.flow.log_prob(p, context=ctx)
logpx = rearrange(logpx, "(n b) -> n b", n=n, b=b)
patch_logpx.append(logpx)
# del ctx, p
# print(p[:4], ctx[:4], logpx)
# Convert back to image
logpx = torch.cat(patch_logpx, dim=0)
logpx = rearrange(logpx, "(h w) b -> b 1 h w", b=b, h=new_h, w=new_w)
return logpx.contiguous()
@staticmethod
def stochastic_step(
scores, x_batch, flow_model, opt=None, train=False, n_patches=32, device="cpu"
):
if train:
flow_model.train()
opt.zero_grad(set_to_none=True)
else:
flow_model.eval()
patches, context = PatchFlow.get_random_patches(
scores, x_batch, flow_model, n_patches
)
patch_feature = patches.to(device)
context_vector = context.to(device)
patch_feature = rearrange(patch_feature, "n b c -> (n b) c")
context_vector = rearrange(context_vector, "n b c -> (n b) c")
# global_pooled_image = flow_model.global_pooler(x_batch)
# global_context = flow_model.global_attention(global_pooled_image)
# gctx = repeat(global_context, "b c -> (n b) c", n=n_patches)
# # Concatenate global context to local context
# context_vector = torch.cat([context_vector, gctx], dim=1)
z, ldj = flow_model.flow.inverse_and_log_det(
patch_feature,
context=context_vector,
)
loss = -torch.mean(flow_model.flow.q0.log_prob(z) + ldj)
loss *= n_patches
if train:
loss.backward()
opt.step()
return loss.item() / n_patches
@staticmethod
def get_random_patches(scores, x_batch, flow_model, n_patches):
b = scores.shape[0]
h = flow_model.local_pooler(scores)
patches = rearrange(h, "b c h w -> (h w) b c")
context = flow_model.position_encoding(h)
context = rearrange(context, "h w c -> (h w) c")
context = repeat(context, "n c -> n b c", b=b)
# conserve gpu memory
patches = patches.cpu()
context = context.cpu()
# Get random patches
total_patches = patches.shape[0]
shuffled_idx = torch.randperm(total_patches)
rand_idx_batch = shuffled_idx[:n_patches]
return patches[rand_idx_batch], context[rand_idx_batch]
|