Spaces:
Runtime error
Runtime error
File size: 9,272 Bytes
b1602ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Streaming images and labels from datasets created with dataset_tool.py."""
import json
import os
import zipfile
import numpy as np
import PIL.Image
import torch
import dnnlib
try:
import pyspng
except ImportError:
pyspng = None
# ----------------------------------------------------------------------------
# Abstract base class for datasets.
class Dataset(torch.utils.data.Dataset):
def __init__(
self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
use_labels=True, # Enable conditioning labels? False = label dimension is zero.
max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed=0, # Random seed to use when applying max_size.
cache=False, # Cache images in CPU memory?
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._cache = cache
self._cached_images = dict() # {raw_idx: np.ndarray, ...}
self._raw_labels = None
self._label_shape = None
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed % (1 << 31)).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
raw_idx = self._raw_idx[idx]
image = self._cached_images.get(raw_idx, None)
if image is None:
image = self._load_raw_image(raw_idx)
if self._cache:
self._cached_images[raw_idx] = image
assert isinstance(image, np.ndarray)
assert list(image.shape) == self._raw_shape[1:]
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
return image.copy(), self.get_label(idx)
def get_label(self, idx):
label = self._get_raw_labels()[self._raw_idx[idx]]
if label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
return label.copy()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = int(self._xflip[idx]) != 0
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
@property
def name(self):
return self._name
@property
def image_shape(self): # [CHW]
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
# ----------------------------------------------------------------------------
# Dataset subclass that loads images recursively from the specified directory
# or ZIP file.
class ImageFolderDataset(Dataset):
def __init__(
self,
path, # Path to directory or zip.
resolution=None, # Ensure specific resolution, None = anything goes.
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
self._zipfile = None
if os.path.isdir(self._path):
self._type = "dir"
self._all_fnames = {
os.path.relpath(os.path.join(root, fname), start=self._path)
for root, _dirs, files in os.walk(self._path)
for fname in files
}
elif self._file_ext(self._path) == ".zip":
self._type = "zip"
self._all_fnames = set(self._get_zipfile().namelist())
else:
raise IOError("Path must point to a directory or zip")
PIL.Image.init()
supported_ext = PIL.Image.EXTENSION.keys() | {".npy"}
self._image_fnames = sorted(
fname
for fname in self._all_fnames
if self._file_ext(fname) in supported_ext
)
if len(self._image_fnames) == 0:
raise IOError("No image files found in the specified path")
name = os.path.splitext(os.path.basename(self._path))[0]
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
if resolution is not None and (
raw_shape[2] != resolution or raw_shape[3] != resolution
):
raise IOError("Image files do not match the specified resolution")
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
@staticmethod
def _file_ext(fname):
return os.path.splitext(fname)[1].lower()
def _get_zipfile(self):
assert self._type == "zip"
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname):
if self._type == "dir":
return open(os.path.join(self._path, fname), "rb")
if self._type == "zip":
return self._get_zipfile().open(fname, "r")
return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_image(self, raw_idx):
fname = self._image_fnames[raw_idx]
ext = self._file_ext(fname)
with self._open_file(fname) as f:
if ext == ".npy":
image = np.load(f)
image = image.reshape(-1, *image.shape[-2:])
elif ext == ".png" and pyspng is not None:
image = pyspng.load(f.read())
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
else:
image = np.array(PIL.Image.open(f))
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
return image
def _load_raw_labels(self):
fname = "dataset.json"
if fname not in self._all_fnames:
return None
with self._open_file(fname) as f:
labels = json.load(f)["labels"]
if labels is None:
return None
labels = dict(labels)
labels = [labels[fname.replace("\\", "/")] for fname in self._image_fnames]
labels = np.array(labels)
labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
return labels
# ----------------------------------------------------------------------------
|