import pandas as pd import gradio as gr data = { "Method": [ "GPT-4o", "GPT-4o-mini", "Gemini-1.5-Pro", "Gemini-1.5-Flash", "Qwen2-VL-2B", "Pangea-7B", "InternVL2-8B", "LLaVa-NeXt-7B" ], "MM Understanding & Reasoning": [ 57.90, 48.82, 46.67, 45.58, 40.59, 40.09, 30.41, 26.33 ], "OCR & Document Understanding": [ 59.11, 42.89, 36.59, 33.59, 25.68, 26.47, 15.91, 19.12 ], "Charts & Diagram Understanding": [ 73.57, 64.98, 47.06, 48.25, 27.83, 38.87, 30.27, 27.56 ], "Video Understanding": [ 74.27, 68.11, 42.94, 53.31, 38.90, 49.01, 51.42, 44.90 ], "Cultural Specific Understanding": [ 80.86, 65.92, 56.24, 46.54, 34.27, 20.34, 20.88, 28.30 ], "Medical Imaging": [ 49.90, 47.37, 33.77, 42.86, 29.12, 31.99, 29.48, 22.54 ], "Agro Specific": [ 80.75, 79.58, 72.12, 76.06, 52.02, 74.51, 44.47, 42.00 ], "Remote Sensing Understanding": [ 22.85, 16.93, 17.07, 14.95, 12.56, 6.67, 5.36, 8.33 ] } df = pd.DataFrame(data) df['Average Score'] = df.iloc[:, 1:].mean(axis=1).round(2) df = df[['Average Score'] + [col for col in df.columns if col != 'Average Score']] def display_data(): return df with gr.Blocks() as demo: gr.Markdown("![camel icon](https://cdn-uploads.huggingface.co/production/uploads/656864e12d73834278a8dea7/n-XfVKd1xVywH_vgPyJyQ.png)", elem_id="camel-icon") # Replace with actual camel icon URL gr.Markdown("# **CAMEL-Bench: Model Performance Across Vision Understanding Tasks**") gr.Markdown(""" This table shows the performance of different models across various tasks including OCR, chart understanding, video, medical imaging, and more. """) gr.Dataframe(value=df, label="CAMEL-Bench Model Performance", interactive=False) demo.launch()