File size: 51,076 Bytes
34a1cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11d2c8b
 
 
 
34a1cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
"""
This file defines a useful high-level abstraction to build Gradio chatbots: ChatInterface.
"""

from __future__ import annotations

import builtins
import copy
import dataclasses
import inspect
import os
import warnings
from collections.abc import AsyncGenerator, Callable, Generator, Sequence
from pathlib import Path
from typing import Literal, Union, cast

import anyio
from gradio_client.documentation import document

from gradio import utils
from gradio.blocks import Blocks
from gradio.components import (
    JSON,
    BrowserState,
    Button,
    Chatbot,
    Component,
    Dataset,
    Markdown,
    MultimodalTextbox,
    State,
    Textbox,
    get_component_instance,
)
from gradio.components.chatbot import (
    ChatMessage,
    ExampleMessage,
    Message,
    MessageDict,
    TupleFormat,
)
from gradio.components.multimodal_textbox import MultimodalPostprocess, MultimodalValue
from gradio.context import get_blocks_context
from gradio.events import Dependency, EditData, SelectData
from gradio.flagging import ChatCSVLogger
from gradio.helpers import create_examples as Examples  # noqa: N812
from gradio.helpers import special_args, update
from gradio.layouts import Accordion, Column, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme


@document()
class ChatInterface(Blocks):
    """
    ChatInterface is Gradio's high-level abstraction for creating chatbot UIs, and allows you to create
    a web-based demo around a chatbot model in a few lines of code. Only one parameter is required: fn, which
    takes a function that governs the response of the chatbot based on the user input and chat history. Additional
    parameters can be used to control the appearance and behavior of the demo.

    Example:
        import gradio as gr

        def echo(message, history):
            return message

        demo = gr.ChatInterface(fn=echo, type="messages", examples=[{"text": "hello", "text": "hola", "text": "merhaba"}], title="Echo Bot")
        demo.launch()
    Demos: chatinterface_random_response, chatinterface_streaming_echo, chatinterface_artifacts
    Guides: creating-a-chatbot-fast, sharing-your-app
    """

    def __init__(
        self,
        fn: Callable,
        *,
        multimodal: bool = False,
        type: Literal["messages", "tuples"] | None = None,
        chatbot: Chatbot | None = None,
        textbox: Textbox | MultimodalTextbox | None = None,
        additional_inputs: str | Component | list[str | Component] | None = None,
        additional_inputs_accordion: str | Accordion | None = None,
        additional_outputs: Component | list[Component] | None = None,
        editable: bool = False,
        examples: list[str] | list[MultimodalValue] | list[list] | None = None,
        example_labels: list[str] | None = None,
        example_icons: list[str] | None = None,
        run_examples_on_click: bool = True,
        cache_examples: bool | None = None,
        cache_mode: Literal["eager", "lazy"] | None = None,
        title: str | None = None,
        description: str | None = None,
        theme: Theme | str | None = None,
        flagging_mode: Literal["never", "manual"] | None = None,
        flagging_options: list[str] | tuple[str, ...] | None = ("Like", "Dislike"),
        flagging_dir: str = ".gradio/flagged",
        css: str | None = None,
        css_paths: str | Path | Sequence[str | Path] | None = None,
        js: str | None = None,
        head: str | None = None,
        head_paths: str | Path | Sequence[str | Path] | None = None,
        analytics_enabled: bool | None = None,
        autofocus: bool = True,
        autoscroll: bool = True,
        submit_btn: str | bool | None = True,
        stop_btn: str | bool | None = True,
        concurrency_limit: int | None | Literal["default"] = "default",
        delete_cache: tuple[int, int] | None = None,
        show_progress: Literal["full", "minimal", "hidden"] = "minimal",
        fill_height: bool = True,
        fill_width: bool = False,
        api_name: str | Literal[False] = "chat",
        save_history: bool = False,
    ):
        """
        Parameters:
            fn: the function to wrap the chat interface around. Normally (assuming `type` is set to "messages"), the function should accept two parameters: a `str` representing the input message and `list` of openai-style dictionaries: {"role": "user" | "assistant", "content": `str` | {"path": `str`} | `gr.Component`} representing the chat history. The function should return/yield a `str` (for a simple message), a supported Gradio component (e.g. gr.Image to return an image), a `dict` (for a complete openai-style message response), or a `list` of such messages.
            multimodal: if True, the chat interface will use a `gr.MultimodalTextbox` component for the input, which allows for the uploading of multimedia files. If False, the chat interface will use a gr.Textbox component for the input. If this is True, the first argument of `fn` should accept not a `str` message but a `dict` message with keys "text" and "files"
            type: The format of the messages passed into the chat history parameter of `fn`. If "messages", passes the history as a list of dictionaries with openai-style "role" and "content" keys. The "content" key's value should be one of the following - (1) strings in valid Markdown (2) a dictionary with a "path" key and value corresponding to the file to display or (3) an instance of a Gradio component: at the moment gr.Image, gr.Plot, gr.Video, gr.Gallery, gr.Audio, and gr.HTML are supported. The "role" key should be one of 'user' or 'assistant'. Any other roles will not be displayed in the output. If this parameter is 'tuples' (deprecated), passes the chat history as a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list should have 2 elements: the user message and the response message.
            chatbot: an instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
            textbox: an instance of the gr.Textbox or gr.MultimodalTextbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox or gr.MultimodalTextbox component will be created.
            editable: if True, users can edit past messages to regenerate responses.
            additional_inputs: an instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If the components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion. The values of these components will be passed into `fn` as arguments in order after the chat history.
            additional_inputs_accordion: if a string is provided, this is the label of the `gr.Accordion` to use to contain additional inputs. A `gr.Accordion` object can be provided as well to configure other properties of the container holding the additional inputs. Defaults to a `gr.Accordion(label="Additional Inputs", open=False)`. This parameter is only used if `additional_inputs` is provided.
            additional_outputs: an instance or list of instances of gradio components to use as additional outputs from the chat function. These must be components that are already defined in the same Blocks scope. If provided, the chat function should return additional values for these components. See $demo/chatinterface_artifacts.
            examples: sample inputs for the function; if provided, appear within the chatbot and can be clicked to populate the chatbot input. Should be a list of strings representing text-only examples, or a list of dictionaries (with keys `text` and `files`) representing multimodal examples. If `additional_inputs` are provided, the examples must be a list of lists, where the first element of each inner list is the string or dictionary example message and the remaining elements are the example values for the additional inputs -- in this case, the examples will appear under the chatbot.
            example_labels: labels for the examples, to be displayed instead of the examples themselves. If provided, should be a list of strings with the same length as the examples list. Only applies when examples are displayed within the chatbot (i.e. when `additional_inputs` is not provided).
            example_icons: icons for the examples, to be displayed above the examples. If provided, should be a list of string URLs or local paths with the same length as the examples list. Only applies when examples are displayed within the chatbot (i.e. when `additional_inputs` is not provided).
            cache_examples: if True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
            cache_mode: if "eager", all examples are cached at app launch. If "lazy", examples are cached for all users after the first use by any user of the app. If None, will use the GRADIO_CACHE_MODE environment variable if defined, or default to "eager".
            run_examples_on_click: if True, clicking on an example will run the example through the chatbot fn and the response will be displayed in the chatbot. If False, clicking on an example will only populate the chatbot input with the example message. Has no effect if `cache_examples` is True
            title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
            description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
            theme: a Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme.
            flagging_mode: one of "never", "manual". If "never", users will not see a button to flag an input and output. If "manual", users will see a button to flag.
            flagging_options: a list of strings representing the options that users can choose from when flagging a message. Defaults to ["Like", "Dislike"]. These two case-sensitive strings will render as "thumbs up" and "thumbs down" icon respectively next to each bot message, but any other strings appear under a separate flag icon.
            flagging_dir: path to the the directory where flagged data is stored. If the directory does not exist, it will be created.
            css: Custom css as a code string. This css will be included in the demo webpage.
            css_paths: Custom css as a pathlib.Path to a css file or a list of such paths. This css files will be read, concatenated, and included in the demo webpage. If the `css` parameter is also set, the css from `css` will be included first.
            js: Custom js as a code string. The custom js should be in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags.
            head: Custom html code to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page.
            head_paths: Custom html code as a pathlib.Path to a html file or a list of such paths. This html files will be read, concatenated, and included in the head of the demo webpage. If the `head` parameter is also set, the html from `head` will be included first.
            analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
            autofocus: if True, autofocuses to the textbox when the page loads.
            autoscroll: If True, will automatically scroll to the bottom of the chatbot when a new message appears, unless the user scrolls up. If False, will not scroll to the bottom of the chatbot automatically.
            submit_btn: If True, will show a submit button with a submit icon within the textbox. If a string, will use that string as the submit button text in place of the icon. If False, will not show a submit button.
            stop_btn: If True, will show a button with a stop icon during generator executions, to stop generating. If a string, will use that string as the submit button text in place of the stop icon. If False, will not show a stop button.
            concurrency_limit: if set, this is the maximum number of chatbot submissions that can be running simultaneously. Can be set to None to mean no limit (any number of chatbot submissions can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `.queue()`, which is 1 by default).
            delete_cache: a tuple corresponding [frequency, age] both expressed in number of seconds. Every `frequency` seconds, the temporary files created by this Blocks instance will be deleted if more than `age` seconds have passed since the file was created. For example, setting this to (86400, 86400) will delete temporary files every day. The cache will be deleted entirely when the server restarts. If None, no cache deletion will occur.
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            fill_height: if True, the chat interface will expand to the height of window.
            fill_width: Whether to horizontally expand to fill container fully. If False, centers and constrains app to a maximum width.
            api_name: the name of the API endpoint to use for the chat interface. Defaults to "chat". Set to False to disable the API endpoint.
            save_history: if True, will save the chat history to the browser's local storage and display previous conversations in a side panel.
        """
        super().__init__(
            analytics_enabled=analytics_enabled,
            mode="chat_interface",
            title=title or "Gradio",
            theme=theme,
            css=css,
            css_paths=css_paths,
            js=js,
            head=head,
            head_paths=head_paths,
            fill_height=fill_height,
            fill_width=fill_width,
            delete_cache=delete_cache,
        )
        self.api_name = api_name
        self.type = type
        self.multimodal = multimodal
        self.concurrency_limit = concurrency_limit
        if isinstance(fn, ChatInterface):
            self.fn = fn.fn
        else:
            self.fn = fn
        self.is_async = inspect.iscoroutinefunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.is_generator = inspect.isgeneratorfunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.provided_chatbot = chatbot is not None
        self.examples = examples
        self.examples_messages = self._setup_example_messages(
            examples, example_labels, example_icons
        )
        self.run_examples_on_click = run_examples_on_click
        self.cache_examples = cache_examples
        self.cache_mode = cache_mode
        self.editable = editable
        self.fill_height = fill_height
        self.autoscroll = autoscroll
        self.autofocus = autofocus
        self.title = title
        self.description = description
        self.show_progress = show_progress
        if save_history and not type == "messages":
            raise ValueError("save_history is only supported for type='messages'")
        self.save_history = save_history
        self.additional_inputs = [
            get_component_instance(i)
            for i in utils.none_or_singleton_to_list(additional_inputs)
        ]
        self.additional_outputs = utils.none_or_singleton_to_list(additional_outputs)
        if additional_inputs_accordion is None:
            self.additional_inputs_accordion_params = {
                "label": "Additional Inputs",
                "open": False,
            }
        elif isinstance(additional_inputs_accordion, str):
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion
            }
        elif isinstance(additional_inputs_accordion, Accordion):
            self.additional_inputs_accordion_params = (
                additional_inputs_accordion.recover_kwargs(
                    additional_inputs_accordion.get_config()
                )
            )
        else:
            raise ValueError(
                f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {builtins.type(additional_inputs_accordion)}"
            )
        self._additional_inputs_in_examples = False
        if self.additional_inputs and self.examples is not None:
            for example in self.examples:
                if not isinstance(example, list):
                    raise ValueError(
                        "Examples must be a list of lists when additional inputs are provided."
                    )
                for idx, example_for_input in enumerate(example):
                    if example_for_input is not None and idx > 0:
                        self._additional_inputs_in_examples = True
                        break
                if self._additional_inputs_in_examples:
                    break

        if flagging_mode is None:
            flagging_mode = os.getenv("GRADIO_CHAT_FLAGGING_MODE", "never")  # type: ignore
        if flagging_mode in ["manual", "never"]:
            self.flagging_mode = flagging_mode
        else:
            raise ValueError(
                "Invalid value for `flagging_mode` parameter."
                "Must be: 'manual' or 'never'."
            )
        self.flagging_options = flagging_options
        self.flagging_dir = flagging_dir

        with self:
            self.saved_conversations = BrowserState(
                [], storage_key=f"_saved_conversations_{self._id}"
            )
            self.conversation_id = State(None)
            self.saved_input = State()  # Stores the most recent user message
            self.null_component = State()  # Used to discard unneeded values

            with Column():
                self._render_header()
                if self.save_history:
                    with Row(scale=1):
                        self._render_history_area()
                        with Column(scale=6):
                            self._render_chatbot_area(
                                chatbot, textbox, submit_btn, stop_btn
                            )
                            self._render_footer()
                else:
                    self._render_chatbot_area(chatbot, textbox, submit_btn, stop_btn)
                    self._render_footer()

            self._setup_events()

    def _render_header(self):
        if self.title:
            Markdown(
                f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>"
            )
        if self.description:
            Markdown(self.description)

    def _render_history_area(self):
        with Column(scale=1, min_width=100):
            self.new_chat_button = Button(
                "New chat",
                variant="primary",
                size="md",
                icon=utils.get_icon_path("plus.svg"),
                # scale=0,
            )
            self.chat_history_dataset = Dataset(
                components=[Textbox(visible=False)],
                show_label=False,
                layout="table",
                type="index",
            )

    def _render_chatbot_area(
        self,
        chatbot: Chatbot | None,
        textbox: Textbox | MultimodalTextbox | None,
        submit_btn: str | bool | None,
        stop_btn: str | bool | None,
    ):
        if chatbot:
            if self.type:
                if self.type != chatbot.type:
                    warnings.warn(
                        "The type of the gr.Chatbot does not match the type of the gr.ChatInterface."
                        f"The type of the gr.ChatInterface, '{self.type}', will be used."
                    )
                    chatbot.type = cast(Literal["messages", "tuples"], self.type)
                    chatbot._setup_data_model()
            else:
                warnings.warn(
                    f"The gr.ChatInterface was not provided with a type, so the type of the gr.Chatbot, '{chatbot.type}', will be used."
                )
                self.type = chatbot.type
            self.chatbot = cast(Chatbot, get_component_instance(chatbot, render=True))
            if self.chatbot.examples and self.examples_messages:
                warnings.warn(
                    "The ChatInterface already has examples set. The examples provided in the chatbot will be ignored."
                )
            self.chatbot.examples = (
                self.examples_messages
                if not self._additional_inputs_in_examples
                else None
            )
            self.chatbot._setup_examples()
        else:
            self.type = self.type or "tuples"
            self.chatbot = Chatbot(
                label="Chatbot",
                scale=1,
                height=400 if self.fill_height else None,
                type=cast(Literal["messages", "tuples"], self.type),
                autoscroll=self.autoscroll,
                examples=self.examples_messages
                if not self._additional_inputs_in_examples
                else None,
            )
        with Group():
            with Row():
                if textbox:
                    textbox.show_label = False
                    textbox_ = get_component_instance(textbox, render=True)
                    if not isinstance(textbox_, (Textbox, MultimodalTextbox)):
                        raise TypeError(
                            f"Expected a gr.Textbox or gr.MultimodalTextbox component, but got {builtins.type(textbox_)}"
                        )
                    self.textbox = textbox_
                else:
                    textbox_component = (
                        MultimodalTextbox if self.multimodal else Textbox
                    )
                    self.textbox = textbox_component(
                        show_label=False,
                        label="Message",
                        placeholder="Type a message...",
                        scale=7,
                        autofocus=self.autofocus,
                        submit_btn=submit_btn,
                        stop_btn=stop_btn,
                    )

        # Hide the stop button at the beginning, and show it with the given value during the generator execution.
        self.original_stop_btn = self.textbox.stop_btn
        self.textbox.stop_btn = False
        self.fake_api_btn = Button("Fake API", visible=False)
        self.api_response = JSON(
            label="Response", visible=False
        )  # Used to store the response from the API call

        # Used internally to store the chatbot value when it differs from the value displayed in the chatbot UI.
        # For example, when a user submits a message, the chatbot UI is immediately updated with the user message,
        # but the chatbot_state value is not updated until the submit_fn is called.
        self.chatbot_state = State(self.chatbot.value if self.chatbot.value else [])

        # Provided so that developers can update the chatbot value from other events outside of `gr.ChatInterface`.
        self.chatbot_value = State(self.chatbot.value if self.chatbot.value else [])

    def _render_footer(self):
        if self.examples:
            self.examples_handler = Examples(
                examples=self.examples,
                inputs=[self.textbox] + self.additional_inputs,
                outputs=self.chatbot,
                fn=self._examples_stream_fn if self.is_generator else self._examples_fn,
                cache_examples=self.cache_examples,
                cache_mode=cast(Literal["eager", "lazy"], self.cache_mode),
                visible=self._additional_inputs_in_examples,
                preprocess=self._additional_inputs_in_examples,
            )

        any_unrendered_inputs = any(
            not inp.is_rendered for inp in self.additional_inputs
        )
        if self.additional_inputs and any_unrendered_inputs:
            with Accordion(**self.additional_inputs_accordion_params):  # type: ignore
                for input_component in self.additional_inputs:
                    if not input_component.is_rendered:
                        input_component.render()

    def _setup_example_messages(
        self,
        examples: list[str] | list[MultimodalValue] | list[list] | None,
        example_labels: list[str] | None = None,
        example_icons: list[str] | None = None,
    ) -> list[ExampleMessage]:
        examples_messages = []
        if examples:
            for index, example in enumerate(examples):
                if isinstance(example, list):
                    example = example[0]
                example_message: ExampleMessage = {}
                if isinstance(example, str):
                    example_message["text"] = example
                elif isinstance(example, dict):
                    example_message["text"] = example.get("text", "")
                    example_message["files"] = example.get("files", [])
                if example_labels:
                    example_message["display_text"] = example_labels[index]
                if self.multimodal:
                    example_files = example_message.get("files")
                    if not example_files:
                        if example_icons:
                            example_message["icon"] = example_icons[index]
                        else:
                            example_message["icon"] = {
                                "path": "",
                                "url": None,
                                "orig_name": None,
                                "mime_type": "text",  # for internal use, not a valid mime type
                                "meta": {"_type": "gradio.FileData"},
                            }
                    elif example_icons:
                        example_message["icon"] = example_icons[index]
                examples_messages.append(example_message)
        return examples_messages

    def _generate_chat_title(self, conversation: list[MessageDict]) -> str:
        """
        Generate a title for a conversation by taking the first user message that is a string
        and truncating it to 40 characters. If files are present, add a πŸ“Ž to the title.
        """
        title = ""
        for message in conversation:
            if message["role"] == "user":
                if isinstance(message["content"], str):
                    title += message["content"]
                    break
                else:
                    title += "πŸ“Ž "
        if len(title) > 40:
            title = title[:40] + "..."
        return title or "Conversation"

    def _save_conversation(
        self,
        index: int | None,
        conversation: list[MessageDict],
        saved_conversations: list[list[MessageDict]],
    ):
        if self.save_history:
            if index is not None:
                saved_conversations[index] = conversation
            else:
                saved_conversations.append(conversation)
                index = len(saved_conversations) - 1
        return index, saved_conversations

    def _delete_conversation(
        self,
        index: int | None,
        saved_conversations: list[list[MessageDict]],
    ):
        if index is not None:
            saved_conversations.pop(index)
        return None, saved_conversations

    def _load_chat_history(self, conversations):
        return Dataset(
            samples=[
                [self._generate_chat_title(conv)]
                for conv in conversations or []
                if conv
            ]
        )

    def _load_conversation(
        self,
        index: int,
        conversations: list[list[MessageDict]],
    ):
        return (
            index,
            Chatbot(
                value=conversations[index],  # type: ignore
                feedback_value=[],
            ),
        )

    def _setup_events(self) -> None:
        from gradio import on

        submit_triggers = [self.textbox.submit, self.chatbot.retry]
        submit_fn = self._stream_fn if self.is_generator else self._submit_fn

        synchronize_chat_state_kwargs = {
            "fn": lambda x: (x, x),
            "inputs": [self.chatbot],
            "outputs": [self.chatbot_state, self.chatbot_value],
            "show_api": False,
            "queue": False,
        }
        submit_fn_kwargs = {
            "fn": submit_fn,
            "inputs": [self.saved_input, self.chatbot_state] + self.additional_inputs,
            "outputs": [self.null_component, self.chatbot] + self.additional_outputs,
            "show_api": False,
            "concurrency_limit": cast(
                Union[int, Literal["default"], None], self.concurrency_limit
            ),
            "show_progress": cast(
                Literal["full", "minimal", "hidden"], self.show_progress
            ),
        }
        save_fn_kwargs = {
            "fn": self._save_conversation,
            "inputs": [
                self.conversation_id,
                self.chatbot_state,
                self.saved_conversations,
            ],
            "outputs": [self.conversation_id, self.saved_conversations],
            "show_api": False,
            "queue": False,
        }

        submit_event = (
            self.textbox.submit(
                self._clear_and_save_textbox,
                [self.textbox],
                [self.textbox, self.saved_input],
                show_api=False,
                queue=False,
            )
            .then(  # The reason we do this outside of the submit_fn is that we want to update the chatbot UI with the user message immediately, before the submit_fn is called
                self._append_message_to_history,
                [self.saved_input, self.chatbot],
                [self.chatbot],
                show_api=False,
                queue=False,
            )
            .then(**submit_fn_kwargs)
        )
        submit_event.then(**synchronize_chat_state_kwargs).then(
            lambda: update(value=None, interactive=True),
            None,
            self.textbox,
            show_api=False,
        ).then(**save_fn_kwargs)

        # Creates the "/chat" API endpoint
        self.fake_api_btn.click(
            submit_fn,
            [self.textbox, self.chatbot_state] + self.additional_inputs,
            [self.api_response, self.chatbot_state] + self.additional_outputs,
            api_name=cast(Union[str, Literal[False]], self.api_name),
            concurrency_limit=cast(
                Union[int, Literal["default"], None], self.concurrency_limit
            ),
            postprocess=False,
        )

        if (
            isinstance(self.chatbot, Chatbot)
            and self.examples
            and not self._additional_inputs_in_examples
        ):
            if self.cache_examples or self.run_examples_on_click:
                example_select_event = self.chatbot.example_select(
                    self.example_clicked,
                    None,
                    [self.chatbot, self.saved_input],
                    show_api=False,
                )
                if not self.cache_examples:
                    example_select_event = example_select_event.then(**submit_fn_kwargs)
                example_select_event.then(**synchronize_chat_state_kwargs)
            else:
                self.chatbot.example_select(
                    self.example_populated,
                    None,
                    [self.textbox],
                    show_api=False,
                )

        retry_event = (
            self.chatbot.retry(
                self._pop_last_user_message,
                [self.chatbot_state],
                [self.chatbot_state, self.saved_input],
                show_api=False,
                queue=False,
            )
            .then(
                self._append_message_to_history,
                [self.saved_input, self.chatbot_state],
                [self.chatbot],
                show_api=False,
                queue=False,
            )
            .then(
                lambda: update(interactive=False, placeholder=""),
                outputs=[self.textbox],
                show_api=False,
            )
            .then(**submit_fn_kwargs)
        )
        retry_event.then(**synchronize_chat_state_kwargs).then(
            lambda: update(interactive=True),
            outputs=[self.textbox],
            show_api=False,
        ).then(**save_fn_kwargs)

        self._setup_stop_events(submit_triggers, [submit_event, retry_event])

        self.chatbot.undo(
            self._pop_last_user_message,
            [self.chatbot],
            [self.chatbot, self.textbox],
            show_api=False,
            queue=False,
        ).then(**synchronize_chat_state_kwargs).then(**save_fn_kwargs)

        self.chatbot.option_select(
            self.option_clicked,
            [self.chatbot],
            [self.chatbot, self.saved_input],
            show_api=False,
        ).then(**submit_fn_kwargs).then(**synchronize_chat_state_kwargs).then(
            **save_fn_kwargs
        )

        self.chatbot.clear(**synchronize_chat_state_kwargs).then(
            self._delete_conversation,
            [self.conversation_id, self.saved_conversations],
            [self.conversation_id, self.saved_conversations],
            show_api=False,
            queue=False,
        )

        if self.editable:
            self.chatbot.edit(
                self._edit_message,
                [self.chatbot],
                [self.chatbot, self.chatbot_state, self.saved_input],
                show_api=False,
            ).success(**submit_fn_kwargs).success(**synchronize_chat_state_kwargs).then(
                **save_fn_kwargs
            )

        if self.save_history:
            self.new_chat_button.click(
                lambda: (None, []),
                None,
                [self.conversation_id, self.chatbot],
                show_api=False,
                queue=False,
            ).then(
                lambda x: x,
                [self.chatbot],
                [self.chatbot_state],
                show_api=False,
                queue=False,
            )

            on(
                triggers=[self.load, self.saved_conversations.change],
                fn=self._load_chat_history,
                inputs=[self.saved_conversations],
                outputs=[self.chat_history_dataset],
                show_api=False,
                queue=False,
            )

            self.chat_history_dataset.click(
                lambda: [],
                None,
                [self.chatbot],
                show_api=False,
                queue=False,
                show_progress="hidden",
            ).then(
                self._load_conversation,
                [self.chat_history_dataset, self.saved_conversations],
                [self.conversation_id, self.chatbot],
                show_api=False,
                queue=False,
                show_progress="hidden",
            ).then(**synchronize_chat_state_kwargs)

        if self.flagging_mode != "never":
            flagging_callback = ChatCSVLogger()
            flagging_callback.setup(self.flagging_dir)
            self.chatbot.feedback_options = self.flagging_options
            self.chatbot.like(flagging_callback.flag, self.chatbot)

        self.chatbot_value.change(
            lambda x: x,
            [self.chatbot_value],
            [self.chatbot],
            show_api=False,
        ).then(**synchronize_chat_state_kwargs)

    def _setup_stop_events(
        self, event_triggers: list[Callable], events_to_cancel: list[Dependency]
    ) -> None:
        textbox_component = MultimodalTextbox if self.multimodal else Textbox
        if self.is_generator:
            original_submit_btn = self.textbox.submit_btn
            for event_trigger in event_triggers:
                event_trigger(
                    utils.async_lambda(
                        lambda: textbox_component(
                            submit_btn=False,
                            stop_btn=self.original_stop_btn,
                        )
                    ),
                    None,
                    [self.textbox],
                    show_api=False,
                    queue=False,
                )
            for event_to_cancel in events_to_cancel:
                event_to_cancel.then(
                    utils.async_lambda(
                        lambda: textbox_component(
                            submit_btn=original_submit_btn, stop_btn=False
                        )
                    ),
                    None,
                    [self.textbox],
                    show_api=False,
                    queue=False,
                )
            self.textbox.stop(
                None,
                None,
                None,
                cancels=events_to_cancel,  # type: ignore
                show_api=False,
            )

    def _clear_and_save_textbox(
        self,
        message: str | MultimodalPostprocess,
    ) -> tuple[
        Textbox | MultimodalTextbox,
        str | MultimodalPostprocess,
    ]:
        return (
            type(self.textbox)("", interactive=False, placeholder=""),
            message,
        )

    @staticmethod
    def _messages_to_tuples(history_messages: list[MessageDict]) -> TupleFormat:
        history_tuples = []
        for message in history_messages:
            if message["role"] == "user":
                history_tuples.append((message["content"], None))
            elif history_tuples and history_tuples[-1][1] is None:
                history_tuples[-1] = (history_tuples[-1][0], message["content"])
            else:
                history_tuples.append((None, message["content"]))
        return history_tuples

    @staticmethod
    def _tuples_to_messages(history_tuples: TupleFormat) -> list[MessageDict]:
        history_messages = []
        for message_tuple in history_tuples:
            if message_tuple[0]:
                history_messages.append({"role": "user", "content": message_tuple[0]})
            if message_tuple[1]:
                history_messages.append(
                    {"role": "assistant", "content": message_tuple[1]}
                )
        return history_messages

    def _append_message_to_history(
        self,
        message: MessageDict | Message | str | Component | MultimodalPostprocess | list,
        history: list[MessageDict] | TupleFormat,
        role: Literal["user", "assistant"] = "user",
    ) -> list[MessageDict] | TupleFormat:
        message_dicts = self._message_as_message_dict(message, role)
        if self.type == "tuples":
            history = self._tuples_to_messages(history)  # type: ignore
        else:
            history = copy.deepcopy(history)
        history.extend(message_dicts)  # type: ignore
        if self.type == "tuples":
            history = self._messages_to_tuples(history)  # type: ignore
        return history

    def _message_as_message_dict(
        self,
        message: MessageDict | Message | str | Component | MultimodalPostprocess | list,
        role: Literal["user", "assistant"],
    ) -> list[MessageDict]:
        """
        Converts a user message, example message, or response from the chat function to a
        list of MessageDict objects that can be appended to the chat history.
        """
        message_dicts = []
        if not isinstance(message, list):
            message = [message]
        for msg in message:
            if isinstance(msg, Message):
                message_dicts.append(msg.model_dump())
            elif isinstance(msg, ChatMessage):
                msg.role = role
                message_dicts.append(
                    dataclasses.asdict(msg, dict_factory=utils.dict_factory)
                )
            elif isinstance(msg, (str, Component)):
                message_dicts.append({"role": role, "content": msg})
            elif (
                isinstance(msg, dict) and "content" in msg
            ):  # in MessageDict format already
                msg["role"] = role
                message_dicts.append(msg)
            else:  # in MultimodalPostprocess format
                for x in msg.get("files", []):
                    if isinstance(x, dict):
                        x = x.get("path")
                    message_dicts.append({"role": role, "content": (x,)})
                if msg["text"] is None or not isinstance(msg["text"], str):
                    pass
                else:
                    message_dicts.append({"role": role, "content": msg["text"]})
        return message_dicts

    async def _submit_fn(
        self,
        message: str | MultimodalPostprocess,
        history: TupleFormat | list[MessageDict],
        request: Request,
        *args,
    ) -> tuple:
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )
        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
        if self.additional_outputs:
            response, *additional_outputs = response
        else:
            additional_outputs = None
        history = self._append_message_to_history(message, history, "user")
        history = self._append_message_to_history(response, history, "assistant")
        if additional_outputs:
            return response, history, *additional_outputs
        return response, history

    async def _stream_fn(
        self,
        message: str | MultimodalPostprocess,
        history: TupleFormat | list[MessageDict],
        request: Request,
        *args,
    ) -> AsyncGenerator[
        tuple,
        None,
    ]:
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )
        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = utils.SyncToAsyncIterator(generator, self.limiter)

        history = self._append_message_to_history(message, history, "user")
        additional_outputs = None
        try:
            first_response = await utils.async_iteration(generator)
            if self.additional_outputs:
                first_response, *additional_outputs = first_response
            history_ = self._append_message_to_history(
                first_response, history, "assistant"
            )
            if not additional_outputs:
                yield first_response, history_
            else:
                yield first_response, history_, *additional_outputs
        except StopIteration:
            yield None, history
        async for response in generator:
            if self.additional_outputs:
                response, *additional_outputs = response
            history_ = self._append_message_to_history(response, history, "assistant")
            if not additional_outputs:
                yield response, history_
            else:
                yield response, history_, *additional_outputs

    def option_clicked(
        self, history: list[MessageDict], option: SelectData
    ) -> tuple[TupleFormat | list[MessageDict], str | MultimodalPostprocess]:
        """
        When an option is clicked, the chat history is appended with the option value.
        The saved input value is also set to option value. Note that event can only
        be called if self.type is "messages" since options are only available for this
        chatbot type.
        """
        history.append({"role": "user", "content": option.value})
        return history, option.value

    def _flatten_example_files(self, example: SelectData):
        """
        Returns an example with the files flattened to just the file path.
        Also ensures that the `files` key is always present in the example.
        """
        example.value["files"] = [f["path"] for f in example.value.get("files", [])]
        return example

    def example_populated(self, example: SelectData):
        if self.multimodal:
            example = self._flatten_example_files(example)
            return example.value
        else:
            return example.value["text"]

    def _edit_message(
        self, history: list[MessageDict] | TupleFormat, edit_data: EditData
    ) -> tuple[
        list[MessageDict] | TupleFormat,
        list[MessageDict] | TupleFormat,
        str | MultimodalPostprocess,
    ]:
        if isinstance(edit_data.index, (list, tuple)):
            history = history[: edit_data.index[0]]
        else:
            history = history[: edit_data.index]
        return history, history, edit_data.value

    def example_clicked(
        self, example: SelectData
    ) -> Generator[
        tuple[TupleFormat | list[MessageDict], str | MultimodalPostprocess], None, None
    ]:
        """
        When an example is clicked, the chat history (and saved input) is initially set only
        to the example message. Then, if example caching is enabled, the cached response is loaded
        and added to the chat history as well.
        """
        history = self._append_message_to_history(example.value, [], "user")
        example = self._flatten_example_files(example)
        message = example.value if self.multimodal else example.value["text"]
        yield history, message
        if self.cache_examples:
            history = self.examples_handler.load_from_cache(example.index)[0].root
            yield history, message

    def _process_example(
        self, message: ExampleMessage | str, response: MessageDict | str | None
    ):
        result = []
        if self.multimodal:
            message = cast(ExampleMessage, message)
            if self.type == "tuples":
                for file in message.get("files", []):
                    result.append([file, None])
                if "text" in message:
                    result.append([message["text"], None])
                result[-1][1] = response
            else:
                for file in message.get("files", []):
                    if isinstance(file, dict):
                        file = file.get("path")
                    result.append({"role": "user", "content": (file,)})
                if "text" in message:
                    result.append({"role": "user", "content": message["text"]})
                result.append({"role": "assistant", "content": response})
        else:
            message = cast(str, message)
            if self.type == "tuples":
                result = [[message, response]]
            else:
                result = [
                    {"role": "user", "content": message},
                    {"role": "assistant", "content": response},
                ]
        return result

    async def _examples_fn(
        self, message: ExampleMessage | str, *args
    ) -> TupleFormat | list[MessageDict]:
        inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)
        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
        return self._process_example(message, response)  # type: ignore

    async def _examples_stream_fn(
        self,
        message: str,
        *args,
    ) -> AsyncGenerator:
        inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = utils.SyncToAsyncIterator(generator, self.limiter)
        async for response in generator:
            yield self._process_example(message, response)

    def _pop_last_user_message(
        self,
        history: list[MessageDict] | TupleFormat,
    ) -> tuple[list[MessageDict] | TupleFormat, str | MultimodalPostprocess]:
        """
        Removes the message (or set of messages) that the user last sent from the chat history and returns them.
        If self.multimodal is True, returns a MultimodalPostprocess (dict) object with text and files.
        If self.multimodal is False, returns just the message text as a string.
        """
        if not history:
            return history, "" if not self.multimodal else {"text": "", "files": []}

        if self.type == "tuples":
            history = self._tuples_to_messages(history)  # type: ignore
        i = len(history) - 1
        while i >= 0 and history[i]["role"] == "assistant":  # type: ignore
            i -= 1
        while i >= 0 and history[i]["role"] == "user":  # type: ignore
            i -= 1
        last_messages = history[i + 1 :]
        last_user_message = ""
        files = []
        for msg in last_messages:
            assert isinstance(msg, dict)  # noqa: S101
            if msg["role"] == "user":
                content = msg["content"]
                if isinstance(content, tuple):
                    files.append(content[0])
                else:
                    last_user_message = content
        return_message = (
            {"text": last_user_message, "files": files}
            if self.multimodal
            else last_user_message
        )
        history_ = history[: i + 1]
        if self.type == "tuples":
            history_ = self._messages_to_tuples(history_)  # type: ignore
        return history_, return_message  # type: ignore

    def render(self) -> ChatInterface:
        # If this is being rendered inside another Blocks, and the height is not explicitly set, set it to 400 instead of 200.
        if get_blocks_context() and not self.provided_chatbot:
            self.chatbot.height = 400
            super().render()
        return self