import gradio as gr import torch from diffusers import DiffusionPipeline from transformers import AutoTokenizer,AutoModel from diffusers.models import AutoencoderKL pipeline = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", text_encoder = AutoModel.from_pretrained("csebuetnlp/banglabert"), custom_pipeline="gr33nr1ng3r/Mukh-Oboyob", ) pipeline.unet.load_attn_procs("gr33nr1ng3r/Mukh-Oboyob") def diffusion(text,num_inference_steps,guidance_scale): prompt=text image = pipeline(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,height=128,width=128).images[0] return image mukh_biboron_app = gr.Interface( diffusion, [ gr.Textbox( label="prompt text", lines=3, ), gr.Slider(1, 100, value=50), gr.Slider(1.0, 30.0, value=7.5), ], "image", ) if __name__ == "__main__": mukh_biboron_app.queue(max_size=20).launch(show_error=True)