Spaces:
Running
Running
File size: 22,666 Bytes
2790d30 53e6d40 2790d30 53e6d40 2790d30 39d3b58 2790d30 53e6d40 2790d30 66df1ac 2790d30 d9aaca7 2790d30 d9aaca7 2790d30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import gradio as gr
from PIL import Image
import torch
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
from utils import setup, get_similarity_map,get_noun_phrase, rgb_to_hsv, hsv_to_rgb
from vpt.launch import default_argument_parser
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
import models
import string
import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
from nltk.tokenize import word_tokenize
import torchvision
import spacy
# download the model
spacy.cli.download("en_core_web_sm")
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
def extract_objects(prompt):
doc = nlp(prompt)
# Extract object nouns (including proper nouns and compound nouns)
objects = set()
for token in doc:
# Check if the token is a noun or part of a named entity
if token.pos_ in {"NOUN", "PROPN"} or token.ent_type_:
objects.add(token.text)
# Check if the token is part of a compound noun
if token.dep_ in {"compound"}:
objects.add(token.head.text)
return list(objects)
args = default_argument_parser().parse_args()
cfg = setup(args)
multi_classes = True
device = "cuda" if torch.cuda.is_available() else "cpu"
Ours, preprocess = models.load("CS-ViT-B/16", device=device, cfg=cfg, train_bool=False)
state_dict = torch.load("sketch_seg_best_miou.pth", map_location=device)
# Trained on 2 gpus so we need to remove the prefix "module." to test it on a single GPU
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
Ours.load_state_dict(new_state_dict)
Ours.eval()
print("Model loaded successfully")
def run(sketch, caption, threshold, seed):
# select a random seed between 1 and 10 for the color
color_seed = np.random.randint(0, 4)
# set the condidate classes here
caption = caption.replace('\n',' ')
classes = extract_objects(caption)
# translator = str.maketrans('', '', string.punctuation)
# caption = caption.translate(translator).lower()
# words = word_tokenize(caption)
# classes = get_noun_phrase(words)
# print(classes)
if len(classes) ==0 or multi_classes == False:
classes = [caption]
# print(classes)
colors = plt.get_cmap("Set1").colors
classes_colors = colors[color_seed:len(classes)+color_seed]
sketch2 = sketch['composite']
# when the drawing tool is used
if sketch2[:,:,0:3].sum() == 0:
temp = sketch2[:,:,3]
# invert it
temp = 255 - temp
sketch2 = np.repeat(temp[:, :, np.newaxis], 3, axis=2)
temp2= np.full_like(temp, 255)
sketch2 = np.dstack((sketch2, temp2))
sketch2 = np.array(sketch2)
pil_img = Image.fromarray(sketch2).convert('RGB')
sketch_tensor = preprocess(pil_img).unsqueeze(0).to(device)
# torchvision.utils.save_image(sketch_tensor, 'sketch_tensor.png')
with torch.no_grad():
text_features = models.encode_text_with_prompt_ensemble(Ours, classes, device, no_module=True)
redundant_features = models.encode_text_with_prompt_ensemble(Ours, [""], device, no_module=True)
num_of_tokens = 3
with torch.no_grad():
sketch_features = Ours.encode_image(sketch_tensor, layers=[12],
text_features=text_features - redundant_features, mode="test").squeeze(0)
sketch_features = sketch_features / sketch_features.norm(dim=1, keepdim=True)
similarity = sketch_features @ (text_features - redundant_features).t()
patches_similarity = similarity[0, num_of_tokens + 1:, :]
pixel_similarity = get_similarity_map(patches_similarity.unsqueeze(0), pil_img.size).cpu()
# visualize_attention_maps_with_tokens(pixel_similarity, classes)
pixel_similarity[pixel_similarity < threshold] = 0
pixel_similarity_array = pixel_similarity.cpu().numpy().transpose(2, 0, 1)
# display_segmented_sketch(pixel_similarity_array, sketch2, classes, classes_colors, live=True)
# Find the class index with the highest similarity for each pixel
class_indices = np.argmax(pixel_similarity_array, axis=0)
# Create an HSV image placeholder
hsv_image = np.zeros(class_indices.shape + (3,)) # Shape (512, 512, 3)
hsv_image[..., 2] = 1 # Set Value to 1 for a white base
# Set the hue and value channels
for i, color in enumerate(classes_colors):
rgb_color = np.array(color).reshape(1, 1, 3)
hsv_color = rgb_to_hsv(rgb_color)
mask = class_indices == i
if i < len(classes): # For the first N-2 classes, set color based on similarity
hsv_image[..., 0][mask] = hsv_color[0, 0, 0] # Hue
hsv_image[..., 1][mask] = pixel_similarity_array[i][mask] > 0 # Saturation
hsv_image[..., 2][mask] = pixel_similarity_array[i][mask] # Value
else: # For the last two classes, set pixels to black
hsv_image[..., 0][mask] = 0 # Hue doesn't matter for black
hsv_image[..., 1][mask] = 0 # Saturation set to 0
hsv_image[..., 2][mask] = 0 # Value set to 0, making it black
mask_tensor_org = sketch2[:,:,0]/255
hsv_image[mask_tensor_org>=0.5] = [0,0,1]
# Convert the HSV image back to RGB to display and save
rgb_image = hsv_to_rgb(hsv_image)
if len(classes) > 1:
# Calculate centroids and render class names
for i, class_name in enumerate(classes):
mask = class_indices == i
if np.any(mask):
y, x = np.nonzero(mask)
centroid_x, centroid_y = np.mean(x), np.mean(y)
plt.text(centroid_x, centroid_y, class_name, color=classes_colors[i], ha='center', va='center',fontsize=10, # color=classes_colors[i]
bbox=dict(facecolor='lightgrey', edgecolor='none', boxstyle='round,pad=0.2', alpha=0.8))
# Display the image with class names
plt.imshow(rgb_image)
plt.axis('off')
plt.tight_layout()
# plt.savefig(f'poster_vis/{classes[0]}.png', bbox_inches='tight', pad_inches=0)
plt.savefig('output.png', bbox_inches='tight', pad_inches=0)
plt.close()
# rgb_image = Image.open(f'poster_vis/{classes[0]}.png')
rgb_image = Image.open('output.png')
return rgb_image
scripts = """
async () => {
// START gallery format
// Get all image elements with the class "image"
var images = document.querySelectorAll('.image_gallery');
var originalParent = document.querySelector('#component-0');
// Create a new parent div element
var parentDiv = document.createElement('div');
var beforeDiv= document.querySelector('.table-wrap').parentElement;
parentDiv.id = "gallery_container";
// Loop through each image, append it to the parent div, and remove it from its original parent
images.forEach(function(image , index ) {
// Append the image to the parent div
parentDiv.appendChild(image);
// Add click event listener to each image
image.addEventListener('click', function() {
let nth_ch = index+1
document.querySelector('.tr-body:nth-child(' + nth_ch + ')').click()
console.log('.tr-body:nth-child(' + nth_ch + ')');
});
// Remove the image from its original parent
});
// Get a reference to the original parent of the images
var originalParent = document.querySelector('#component-0');
// Append the new parent div to the original parent
originalParent.insertBefore(parentDiv, beforeDiv);
// END gallery format
// START confidence span
// Get the selected div (replace 'selectedDivId' with the actual ID of your div)
var selectedDiv = document.querySelector("label[for='range_id_0'] > span")
// Get the text content of the div
var textContent = selectedDiv.textContent;
// Find the text before the first colon ':'
var colonIndex = textContent.indexOf(':');
var textBeforeColon = textContent.substring(0, colonIndex);
// Wrap the text before colon with a span element
var spanElement = document.createElement('span');
spanElement.textContent = textBeforeColon;
// Replace the original text with the modified text containing the span
selectedDiv.innerHTML = textContent.replace(textBeforeColon, spanElement.outerHTML);
// START format the column names :
// Get all elements with the class "test_class"
var elements = document.querySelectorAll('.tr-head > th');
// Iterate over each element
elements.forEach(function(element) {
// Get the text content of the element
var text = element.textContent.trim();
// Remove ":" from the text
var wordWithoutColon = text.replace(':', '');
// Split the text into words
var words = wordWithoutColon.split(' ');
// Keep only the first word
var firstWord = words[0];
// Set the text content of the element to the first word
element.textContent = firstWord;
});
document.querySelector('input[type=number]').disabled = true;
}
"""
css="""
gradio-app {
background-color: white !important;
}
.white-bg {
background-color: white !important;
}
.gray-border {
border: 1px solid dimgrey !important;
}
.border-radius {
border-radius: 8px !important;
}
.black-text {
color : black !important;
}
th {
color : black !important;
}
tr {
background-color: white !important;
color: black !important;
}
td {
border-bottom : 1px solid black !important;
}
label[data-testid="block-label"] {
background: white;
color: black;
font-weight: bold;
}
.controls-wrap button:disabled {
color: gray !important;
background-color: white !important;
}
.controls-wrap button:not(:disabled) {
color: black !important;
background-color: white !important;
}
.source-wrap button {
color: black !important;
}
.toolbar-wrap button {
color: black !important;
}
.empty.wrap {
color: black !important;
}
textarea {
background-color : #f7f9f8 !important;
color : #afb0b1 !important
}
input[data-testid="number-input"] {
background-color : #f7f9f8 !important;
color : black !important
}
tr > th {
border-bottom : 1px solid black !important;
}
tr:hover {
background: #f7f9f8 !important;
}
#component-19{
justify-content: center !important;
}
#component-19 > button {
flex: none !important;
background-color : black !important;
font-weight: bold !important;
}
.bold {
font-weight: bold !important;
}
span[data-testid="block-info"]{
color: black !important;
font-weight: bold !important;
}
#component-14 > div {
background-color : white !important;
}
button[aria-label="Clear"] {
background-color : white !important;
color: black !important;
}
#gallery_container {
display: flex;
flex-wrap: wrap;
justify-content: start;
}
.image_gallery {
margin-bottom: 1rem;
margin-right: 1rem;
}
label[for='range_id_0'] > span > span {
text-decoration: underline;
}
label[for='range_id_0'] > span > span {
font-size: normal !important;
}
.underline {
text-decoration: underline;
}
.mt-mb-1{
margin-top: 1rem;
margin-bottom: 1rem;
}
#gallery_container + div {
visibility: hidden;
height: 10px;
}
input[type=number][disabled] {
background-color: rgb(247, 249, 248) !important;
color: black !important;
-webkit-text-fill-color: black !important;
}
#component-13 {
display: flex;
flex-direction: column;
align-items: center;
}
"""
with gr.Blocks(js=scripts, css=css, theme='gstaff/xkcd') as demo:
gr.HTML("<h1 class='black-text' style='text-align: center;'>Open Vocabulary Scene Sketch Semantic Understanding</div>")
gr.HTML("<div class='black-text'></div>")
# gr.HTML("<div class='black-text' style='text-align: center;'><a href='https://ahmedbourouis.github.io/ahmed-bourouis/'>Ahmed Bourouis</a>,<a href='https://profiles.stanford.edu/judith-fan'>Judith Ellen Fan</a>, <a href='https://yulia.gryaditskaya.com/'>Yulia Gryaditskaya</a></div>")
gr.HTML("<div class='black-text' style='text-align: center;'>Ahmed Bourouis, Judith Ellen Fan, Yulia Gryaditskaya</div>")
gr.HTML("<div class='black-text' style='text-align: center;' >CVPR, 2024</p>")
gr.HTML("<div style='text-align: center;'><p><a href='https://ahmedbourouis.github.io/Scene_Sketch_Segmentation/'>Project page</a></p></div>")
# gr.Markdown( "Scene Sketch Semantic Segmentation.", elem_classes=["black-txt" , "h1"] )
# gr.Markdown( "Open Vocabulary Scene Sketch Semantic Understanding", elem_classes=["black-txt" , "p"] )
# gr.Markdown( "Open Vocabulary Scene Sketch Semantic Understanding", elem_classes=["black-txt" , "p"] )
# gr.Markdown( "")
with gr.Row():
with gr.Column():
# in_image = gr.Image( label="Sketch", type="pil", sources="upload" , height=512 )
in_canvas_image = gr.Sketchpad(
# value=Image.new('RGB', (512, 512), color=(255, 255, 255)),
brush=gr.Brush(colors=["#000000"], color_mode="fixed" , default_size=2),
image_mode="RGBA",elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,
label="Sketch" , canvas_size=(512,512) ,sources=['upload'],
interactive=True , layers= False, transforms=[]
)
query_selector = 'button[aria-label="Upload button"]'
# with gr.Row():
# segment_btn.click(fn=run, inputs=[in_image, in_textbox, in_slider], outputs=[out_image])
upload_draw_btn = gr.HTML(f"""
<div id="upload_draw_group" class="svelte-15lo0d8 stretch">
<button class="sm black-text white-bg gray-border border-radius own-shadow svelte-cmf5ev bold" id="upload_btn" onclick="return document.querySelector('.source-wrap button').click()"> Upload a new sketch</button>
<button class="sm black-text white-bg gray-border border-radius own-shadow svelte-cmf5ev bold" id="draw_btn" onclick="return document.querySelector('.controls-wrap button:nth-child(3)').click()"> Draw a new sketch</button>
</div>
""")
# in_textbox = gr.Textbox( lines=2, elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,label="Caption your Sketch!", placeholder="Include the categories that you want the AI to segment. \n e.g. 'giraffe, clouds' or 'a boy flying a kite' ")
with gr.Column():
out_image = gr.Image( value=Image.new('RGB', (512, 512), color=(255, 255, 255)),
elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,
type="pil", label="Segmented Sketch" ) #, height=512, width=512)
# # gr.HTML("<h3 class='black-text'> <span class='black-text underline'>Confidence:</span> Adjust AI agent confidence in guessing categories </div>")
# in_slider = gr.Slider(elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,
# info="Adjust AI agent confidence in guessing categories",
# label="Confidence:",
# value=0.5 , interactive=True, step=0.05, minimum=0, maximum=1)
with gr.Row():
with gr.Column():
in_textbox = gr.Textbox( lines=2, elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,label="Caption your Sketch!", placeholder="Include the categories that you want the AI to segment. \n e.g. 'giraffe, clouds' or 'a boy flying a kite' ")
with gr.Column():
# gr.HTML("<h3 class='black-text'> <span class='black-text underline'>Confidence:</span> Adjust AI agent confidence in guessing categories </div>")
in_slider = gr.Slider(elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,
info="Adjust AI agent confidence in guessing categories",
label="Confidence:",
value=0.5 , interactive=True, step=0.05, minimum=0, maximum=1)
with gr.Row():
segment_btn = gr.Button( 'Segment it¹ !' , elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" , 'bold' , 'mt-mb-1' ] , size="sm")
segment_btn.click(fn=run, inputs=[in_canvas_image , in_textbox , in_slider ], outputs=[out_image])
gallery_label = gr.HTML("<h3 class='black-text'> <span class='black-text underline'>Gallery:</span> <span style='color: grey;'>you can click on any of the example sketches below to start segmenting them (or even drawing over them)</span> </div>")
gallery= gr.HTML(f"""
<div>
{gr.Image( elem_classes=["image_gallery"] , label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/sketch_1.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/sketch_2.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/sketch_3.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000004068.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000004546.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000005076.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000006336.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000011766.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000024458.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000024931.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000034214.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000260974.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000268340.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000305414.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000484246.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000549338.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000038116.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000221509.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000246066.png', height=200, width=200)}
{gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000001611.png', height=200, width=200)}
</div>
""")
examples = gr.Examples(
examples_per_page=30,
examples=[
['demo/sketch_1.png', 'giraffe looking at you', 0.6],
['demo/sketch_2.png', 'a kite flying in the sky', 0.6],
['demo/sketch_3.png', 'a girl playing', 0.6],
['demo/000000004068.png', 'car going so fast', 0.6],
['demo/000000004546.png', 'mountains in the background', 0.6],
['demo/000000005076.png', 'huge tree', 0.6],
['demo/000000006336.png', 'nice three sheeps', 0.6],
['demo/000000011766.png', 'bird minding its own business', 0.6],
['demo/000000024458.png', 'horse with a mask on', 0.6],
['demo/000000024931.png', 'some random person', 0.6],
['demo/000000034214.png', 'a cool kid on a skateboard', 0.6],
['demo/000000260974.png', 'the chair on the left', 0.6],
['demo/000000268340.png', 'stop sign', 0.6],
['demo/000000305414.png', 'a lonely elephant roaming around', 0.6],
['demo/000000484246.png', 'giraffe with a loong neck', 0.6],
['demo/000000549338.png', 'two donkeys trying to be smart', 0.6],
['demo/000000038116.png', 'a bat next to a kid', 0.6],
['demo/000000221509.png', 'funny looking cow', 0.6],
['demo/000000246066.png', 'bench in the park', 0.6],
['demo/000000001611.png', 'trees in the background', 0.6]
],
inputs=[in_canvas_image, in_textbox , in_slider],
fn=run,
# cache_examples=True,
)
gr.HTML("<h5 class='black-text' style='text-align: left;'>¹This demo runs on a basic 2 vCPU. For instant segmentation, use a commercial Nvidia RTX 3090 GPU.</h5>")
gr.HTML("<h5 class='black-text' style='text-align: left;'>¹We compare the entire caption to the scene sketch and threshold most similar pixels, without extracting individual classes.</h5>")
demo.launch(share=False)
|