File size: 22,666 Bytes
2790d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53e6d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790d30
 
 
53e6d40
2790d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d3b58
2790d30
 
 
53e6d40
 
 
 
 
 
2790d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66df1ac
2790d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9aaca7
2790d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9aaca7
 
2790d30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import gradio as gr
from PIL import Image
import torch
from torchvision.transforms import InterpolationMode

BICUBIC = InterpolationMode.BICUBIC
from utils import setup, get_similarity_map,get_noun_phrase, rgb_to_hsv, hsv_to_rgb
from vpt.launch import default_argument_parser
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
import models
import string
import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
from nltk.tokenize import word_tokenize
import torchvision

import spacy

# download the model
spacy.cli.download("en_core_web_sm")

# Load spaCy model
nlp = spacy.load("en_core_web_sm")

def extract_objects(prompt):
    doc = nlp(prompt)
    # Extract object nouns (including proper nouns and compound nouns)
    objects = set()
    for token in doc:
        # Check if the token is a noun or part of a named entity
        if token.pos_ in {"NOUN", "PROPN"} or token.ent_type_:
            objects.add(token.text)
        # Check if the token is part of a compound noun
        if token.dep_ in {"compound"}:
            objects.add(token.head.text)
    return list(objects)

args = default_argument_parser().parse_args()
cfg = setup(args)

multi_classes = True

device = "cuda" if torch.cuda.is_available() else "cpu"
Ours, preprocess = models.load("CS-ViT-B/16", device=device, cfg=cfg, train_bool=False)
state_dict = torch.load("sketch_seg_best_miou.pth", map_location=device)

# Trained on 2 gpus so we need to remove the prefix "module." to test it on a single GPU
new_state_dict = OrderedDict()
for k, v in state_dict.items():
    name = k[7:]  # remove `module.`
    new_state_dict[name] = v
Ours.load_state_dict(new_state_dict)
Ours.eval()
print("Model loaded successfully")


def run(sketch, caption, threshold, seed):
    # select a random seed between 1 and 10 for the color
    color_seed = np.random.randint(0, 4)
    
    # set the condidate classes here
    caption = caption.replace('\n',' ')
    classes = extract_objects(caption)
    # translator = str.maketrans('', '', string.punctuation)
    # caption = caption.translate(translator).lower()
    # words = word_tokenize(caption)
    # classes = get_noun_phrase(words)
    # print(classes)
    if len(classes) ==0 or multi_classes == False:
        classes = [caption]

    # print(classes)
    
    colors = plt.get_cmap("Set1").colors
    classes_colors = colors[color_seed:len(classes)+color_seed]

    sketch2 = sketch['composite']   

    # when the drawing tool is used
    if sketch2[:,:,0:3].sum() == 0:
        temp = sketch2[:,:,3]
        # invert it
        temp = 255 - temp
        sketch2 = np.repeat(temp[:, :, np.newaxis], 3, axis=2)  
        temp2= np.full_like(temp, 255)
        sketch2 = np.dstack((sketch2, temp2))
    
    sketch2 = np.array(sketch2)
    pil_img = Image.fromarray(sketch2).convert('RGB')
    sketch_tensor = preprocess(pil_img).unsqueeze(0).to(device)
    # torchvision.utils.save_image(sketch_tensor, 'sketch_tensor.png') 
    
    with torch.no_grad():
        text_features = models.encode_text_with_prompt_ensemble(Ours, classes, device, no_module=True)
        redundant_features = models.encode_text_with_prompt_ensemble(Ours, [""], device, no_module=True)

    num_of_tokens = 3
    with torch.no_grad():
        sketch_features = Ours.encode_image(sketch_tensor, layers=[12],
                                            text_features=text_features - redundant_features, mode="test").squeeze(0)
        sketch_features = sketch_features / sketch_features.norm(dim=1, keepdim=True)
    similarity = sketch_features @ (text_features - redundant_features).t()
    patches_similarity = similarity[0, num_of_tokens + 1:, :]
    pixel_similarity = get_similarity_map(patches_similarity.unsqueeze(0), pil_img.size).cpu()
    # visualize_attention_maps_with_tokens(pixel_similarity, classes)
    pixel_similarity[pixel_similarity < threshold] = 0
    pixel_similarity_array = pixel_similarity.cpu().numpy().transpose(2, 0, 1)


    # display_segmented_sketch(pixel_similarity_array, sketch2, classes, classes_colors, live=True)
    
    # Find the class index with the highest similarity for each pixel
    class_indices = np.argmax(pixel_similarity_array, axis=0)
    # Create an HSV image placeholder
    hsv_image = np.zeros(class_indices.shape + (3,))  # Shape (512, 512, 3)
    hsv_image[..., 2] = 1  # Set Value to 1 for a white base
    
    # Set the hue and value channels
    for i, color in enumerate(classes_colors):
        rgb_color = np.array(color).reshape(1, 1, 3)
        hsv_color = rgb_to_hsv(rgb_color)
        mask = class_indices == i
        if i < len(classes):  # For the first N-2 classes, set color based on similarity
            hsv_image[..., 0][mask] = hsv_color[0, 0, 0]  # Hue
            hsv_image[..., 1][mask] = pixel_similarity_array[i][mask] > 0  # Saturation
            hsv_image[..., 2][mask] = pixel_similarity_array[i][mask]  # Value
        else:  # For the last two classes, set pixels to black
            hsv_image[..., 0][mask] = 0  # Hue doesn't matter for black
            hsv_image[..., 1][mask] = 0  # Saturation set to 0
            hsv_image[..., 2][mask] = 0  # Value set to 0, making it black
    
    mask_tensor_org = sketch2[:,:,0]/255
    hsv_image[mask_tensor_org>=0.5] = [0,0,1]

    # Convert the HSV image back to RGB to display and save
    rgb_image = hsv_to_rgb(hsv_image)

    
    if len(classes) > 1:
        # Calculate centroids and render class names
        for i, class_name in enumerate(classes):
            mask = class_indices == i
            if np.any(mask):
                y, x = np.nonzero(mask)
                centroid_x, centroid_y = np.mean(x), np.mean(y)
                plt.text(centroid_x, centroid_y, class_name, color=classes_colors[i], ha='center', va='center',fontsize=10,   # color=classes_colors[i]
                bbox=dict(facecolor='lightgrey', edgecolor='none', boxstyle='round,pad=0.2', alpha=0.8))

    # Display the image with class names
    plt.imshow(rgb_image)
    plt.axis('off')
    plt.tight_layout()
    # plt.savefig(f'poster_vis/{classes[0]}.png', bbox_inches='tight', pad_inches=0)
    plt.savefig('output.png', bbox_inches='tight', pad_inches=0)
    plt.close()
    
    # rgb_image = Image.open(f'poster_vis/{classes[0]}.png')    
    rgb_image = Image.open('output.png')

    return rgb_image



scripts = """
async () => {
    // START gallery format
    // Get all image elements with the class "image"
    var images = document.querySelectorAll('.image_gallery');
    var originalParent = document.querySelector('#component-0');
    // Create a new parent div element
    var parentDiv = document.createElement('div');
    var beforeDiv= document.querySelector('.table-wrap').parentElement; 
    parentDiv.id = "gallery_container";
    
    // Loop through each image, append it to the parent div, and remove it from its original parent
    images.forEach(function(image , index ) {
        // Append the image to the parent div
        parentDiv.appendChild(image);
        
        // Add click event listener to each image
        image.addEventListener('click', function() {
            let nth_ch = index+1
            document.querySelector('.tr-body:nth-child(' + nth_ch + ')').click()
            console.log('.tr-body:nth-child(' + nth_ch + ')');
        });
    
        // Remove the image from its original parent
    });
    
    
    // Get a reference to the original parent of the images
    var originalParent = document.querySelector('#component-0');
    
    // Append the new parent div to the original parent
    originalParent.insertBefore(parentDiv, beforeDiv);
    
    // END gallery format
    
    // START confidence span 
    
    // Get the selected div (replace 'selectedDivId' with the actual ID of your div)
    var selectedDiv = document.querySelector("label[for='range_id_0'] > span")
    
    // Get the text content of the div
    var textContent = selectedDiv.textContent;
    
    // Find the text before the first colon ':'
    var colonIndex = textContent.indexOf(':');
    var textBeforeColon = textContent.substring(0, colonIndex);
    
    // Wrap the text before colon with a span element
    var spanElement = document.createElement('span');
    spanElement.textContent = textBeforeColon;
    
    // Replace the original text with the modified text containing the span
    selectedDiv.innerHTML = textContent.replace(textBeforeColon, spanElement.outerHTML);
    
    // START format the column names : 
    // Get all elements with the class "test_class"
    var elements = document.querySelectorAll('.tr-head > th');
    
    // Iterate over each element
    elements.forEach(function(element) {
        // Get the text content of the element
        var text = element.textContent.trim();
    
        // Remove ":" from the text
        var wordWithoutColon = text.replace(':', '');
    
        // Split the text into words
        var words = wordWithoutColon.split(' ');
    
        // Keep only the first word
        var firstWord = words[0];
    
        // Set the text content of the element to the first word
        element.textContent = firstWord;
    });
    
    document.querySelector('input[type=number]').disabled = true;   
}
"""

css="""

gradio-app {
    background-color: white !important;
}

.white-bg {
    background-color: white !important;
}

.gray-border {
    border: 1px solid dimgrey !important;
}

.border-radius {
    border-radius: 8px !important;
}

.black-text {
    color : black !important;
}

th {
 color : black !important;
 
}

tr {
    background-color: white !important;
    color: black !important;
}

td {
  border-bottom : 1px solid black !important;
}

label[data-testid="block-label"] {
    background: white;
    color: black;
    font-weight: bold;
}

.controls-wrap button:disabled {
    color: gray !important;
    background-color: white !important;
}

.controls-wrap button:not(:disabled) {
    color: black !important;
    background-color: white !important;

}

.source-wrap button {
    color: black !important;
}

.toolbar-wrap button {
    color: black !important;
}

.empty.wrap {
    color: black !important;
}


textarea {
    background-color : #f7f9f8 !important;
    color : #afb0b1 !important
}


input[data-testid="number-input"] {
    background-color : #f7f9f8 !important;
    color : black !important
}

tr > th { 
   border-bottom : 1px solid black !important;
}

tr:hover {
    background: #f7f9f8 !important;
}

#component-19{
    justify-content: center !important;
}

#component-19 > button {
    flex: none !important;
    background-color : black !important;
        font-weight: bold !important;

} 

.bold {
    font-weight: bold !important;
}

span[data-testid="block-info"]{
    color: black !important;
    font-weight: bold !important;
}

#component-14 > div {
    background-color : white !important;

}

button[aria-label="Clear"] {
    background-color : white !important;
    color: black !important;

}

#gallery_container {
    display: flex;
    flex-wrap: wrap;
    justify-content: start;
}

.image_gallery {
    margin-bottom: 1rem;
    margin-right: 1rem;
}

label[for='range_id_0'] > span > span {
    text-decoration: underline;
}

label[for='range_id_0'] > span > span {
    font-size: normal !important;
}

.underline {
    text-decoration: underline;
}


.mt-mb-1{
    margin-top: 1rem;
    margin-bottom: 1rem;
}

#gallery_container + div {
  visibility: hidden;
  height: 10px;
}

input[type=number][disabled] {
    background-color: rgb(247, 249, 248) !important;
    color: black !important;
    -webkit-text-fill-color: black !important;
}

#component-13 {
    display: flex;
    flex-direction: column;
    align-items: center;
}

"""


with gr.Blocks(js=scripts, css=css, theme='gstaff/xkcd') as demo:
    gr.HTML("<h1 class='black-text' style='text-align: center;'>Open Vocabulary Scene Sketch Semantic Understanding</div>")
    gr.HTML("<div class='black-text'></div>")
    # gr.HTML("<div class='black-text' style='text-align: center;'><a href='https://ahmedbourouis.github.io/ahmed-bourouis/'>Ahmed Bourouis</a>,<a href='https://profiles.stanford.edu/judith-fan'>Judith Ellen Fan</a>, <a href='https://yulia.gryaditskaya.com/'>Yulia Gryaditskaya</a></div>")
    gr.HTML("<div class='black-text' style='text-align: center;'>Ahmed Bourouis, Judith Ellen Fan, Yulia Gryaditskaya</div>")
    gr.HTML("<div class='black-text' style='text-align: center;' >CVPR, 2024</p>")
    gr.HTML("<div style='text-align: center;'><p><a href='https://ahmedbourouis.github.io/Scene_Sketch_Segmentation/'>Project page</a></p></div>")


    # gr.Markdown(   "Scene Sketch Semantic Segmentation.", elem_classes=["black-txt" , "h1"] )
    # gr.Markdown(   "Open Vocabulary Scene Sketch Semantic Understanding", elem_classes=["black-txt" , "p"] )
    # gr.Markdown(   "Open Vocabulary Scene Sketch Semantic Understanding", elem_classes=["black-txt" , "p"] )
    # gr.Markdown( "")


    with gr.Row():
        with gr.Column():
            # in_image = gr.Image( label="Sketch", type="pil", sources="upload" , height=512 )
            in_canvas_image = gr.Sketchpad(
                # value=Image.new('RGB', (512, 512), color=(255, 255, 255)),
                brush=gr.Brush(colors=["#000000"], color_mode="fixed" , default_size=2), 
                image_mode="RGBA",elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ] ,  
                label="Sketch" , canvas_size=(512,512) ,sources=['upload'], 
                interactive=True , layers= False, transforms=[] 
                )
            query_selector = 'button[aria-label="Upload button"]'
            
            # with gr.Row():
                # segment_btn.click(fn=run, inputs=[in_image, in_textbox, in_slider], outputs=[out_image])
            upload_draw_btn = gr.HTML(f"""
                <div id="upload_draw_group" class="svelte-15lo0d8 stretch">
                    <button class="sm black-text white-bg gray-border  border-radius own-shadow svelte-cmf5ev bold" id="upload_btn" onclick="return document.querySelector('.source-wrap button').click()"> Upload a new sketch</button>
                    <button class="sm black-text white-bg gray-border border-radius own-shadow svelte-cmf5ev bold" id="draw_btn" onclick="return document.querySelector('.controls-wrap button:nth-child(3)').click()"> Draw a new sketch</button>
                </div>
                """)
            
            # in_textbox = gr.Textbox( lines=2, elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ]  ,label="Caption your Sketch!", placeholder="Include the categories that you want the AI to segment. \n e.g. 'giraffe, clouds' or 'a boy flying a kite' ")

        with gr.Column():
            out_image = gr.Image( value=Image.new('RGB', (512, 512), color=(255, 255, 255)),
                elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ]  , 
                                 type="pil", label="Segmented Sketch" ) #, height=512, width=512)
            
            # # gr.HTML("<h3 class='black-text'> <span class='black-text underline'>Confidence:</span> Adjust AI agent confidence in guessing categories </div>")
            # in_slider = gr.Slider(elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ]  ,
            #                       info="Adjust AI agent confidence in guessing categories",
            #                         label="Confidence:",
            #                         value=0.5 , interactive=True,  step=0.05, minimum=0, maximum=1)

    with gr.Row():
        with gr.Column():
            in_textbox = gr.Textbox( lines=2, elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ]  ,label="Caption your Sketch!", placeholder="Include the categories that you want the AI to segment. \n e.g. 'giraffe, clouds' or 'a boy flying a kite' ")

        with gr.Column():   
            # gr.HTML("<h3 class='black-text'> <span class='black-text underline'>Confidence:</span> Adjust AI agent confidence in guessing categories </div>")
            in_slider = gr.Slider(elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" ]  ,
                                  info="Adjust AI agent confidence in guessing categories",
                                    label="Confidence:",
                                    value=0.5 , interactive=True,  step=0.05, minimum=0, maximum=1)

    with gr.Row():
        segment_btn = gr.Button( 'Segment it¹ !' , elem_classes=["white-bg", "gray-border" , "border-radius" ,"own-shadow" , 'bold' , 'mt-mb-1' ] , size="sm")
        segment_btn.click(fn=run, inputs=[in_canvas_image , in_textbox , in_slider  ], outputs=[out_image])
    gallery_label = gr.HTML("<h3 class='black-text'> <span class='black-text underline'>Gallery:</span> <span style='color: grey;'>you can click on any of the example sketches below to start segmenting them (or even drawing over them)</span> </div>")

    gallery= gr.HTML(f"""
        <div>
            {gr.Image( elem_classes=["image_gallery"] , label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/sketch_1.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/sketch_2.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/sketch_3.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000004068.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000004546.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000005076.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000006336.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000011766.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000024458.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000024931.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000034214.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000260974.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000268340.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000305414.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000484246.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000549338.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000038116.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000221509.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000246066.png', height=200, width=200)}
            {gr.Image( elem_classes=["image_gallery"] ,label="Sketch", show_download_button=False, show_label=False, type="pil", value='demo/000000001611.png', height=200, width=200)}
        </div>
    """)

    examples = gr.Examples(
        examples_per_page=30,
        examples=[
        ['demo/sketch_1.png', 'giraffe looking at you', 0.6],
        ['demo/sketch_2.png', 'a kite flying in the sky', 0.6],
        ['demo/sketch_3.png', 'a girl playing', 0.6],
        ['demo/000000004068.png', 'car going so fast', 0.6],
        ['demo/000000004546.png', 'mountains in the background', 0.6],
        ['demo/000000005076.png', 'huge tree', 0.6],
        ['demo/000000006336.png', 'nice three sheeps', 0.6],
        ['demo/000000011766.png', 'bird minding its own business', 0.6],
        ['demo/000000024458.png', 'horse with a mask on', 0.6],
        ['demo/000000024931.png', 'some random person', 0.6],
        ['demo/000000034214.png', 'a cool kid on a skateboard', 0.6],
        ['demo/000000260974.png', 'the chair on the left', 0.6],
        ['demo/000000268340.png', 'stop sign', 0.6],
        ['demo/000000305414.png', 'a lonely elephant roaming around', 0.6],
        ['demo/000000484246.png', 'giraffe with a loong neck', 0.6],
        ['demo/000000549338.png', 'two donkeys trying to be smart', 0.6],
        ['demo/000000038116.png', 'a bat next to a kid', 0.6],
        ['demo/000000221509.png', 'funny looking cow', 0.6],
        ['demo/000000246066.png', 'bench in the park', 0.6],
        ['demo/000000001611.png', 'trees in the background', 0.6]
        ],
        inputs=[in_canvas_image, in_textbox , in_slider],
        fn=run,
        # cache_examples=True,
    )
    
    gr.HTML("<h5 class='black-text' style='text-align: left;'>¹This demo runs on a basic 2 vCPU. For instant segmentation, use a commercial Nvidia RTX 3090 GPU.</h5>")
    gr.HTML("<h5 class='black-text' style='text-align: left;'>¹We compare the entire caption to the scene sketch and threshold most similar pixels, without extracting individual classes.</h5>")
demo.launch(share=False)