import os import spaces import gradio as gr import torch from modeling_colflor import ColFlor from processing_colflor import ColFlorProcessor from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator from colpali_engine.utils.colpali_processing_utils import ( process_images, process_queries, ) from pdf2image import convert_from_path from PIL import Image from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoProcessor # Load model model_name = "ahmed-masry/ColFlor" token = os.environ.get("HF_TOKEN") model = ColFlor.from_pretrained( model_name, device_map="cuda", token = token).eval() processor = ColFlorProcessor.from_pretrained(model_name, token = token) mock_image = Image.new("RGB", (768, 768), (255, 255, 255)) @spaces.GPU def search(query: str, ds, images, k): device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) qs = [] with torch.no_grad(): batch_query = processor.process_queries([query]) batch_query = {k: v.to(device) for k, v in batch_query.items()} embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) retriever_evaluator = CustomEvaluator(is_multi_vector=True) scores = retriever_evaluator.evaluate(qs, ds) top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] results = [] for idx in top_k_indices: results.append((images[idx], f"Page {idx}")) return results def index(files, ds): print("Converting files") images = convert_files(files) print(f"Files converted with {len(images)} images.") return index_gpu(images, ds) def convert_files(files): images = [] for f in files: images.extend(convert_from_path(f, thread_count=4)) if len(images) >= 150: raise gr.Error("The number of images in the dataset should be less than 150.") return images @spaces.GPU def index_gpu(images, ds): """Example script to run inference with ColPali""" # run inference - docs dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=processor.process_images, ) device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return f"Uploaded and converted {len(images)} pages", ds, images def get_example(): return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]] with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# ColFlor: Towards BERT-Size Vision-Language Document Retrieval Models") gr.Markdown("""Demo to test ColFlor on PDF documents. This space is adapted from [ColPali Demo Space](https://huggingface.co./spaces/manu/ColPali-demo) For more details about ColFlor, please refer to our blogpost (https://huggingface.co./blog/ahmed-masry/colflor). This demo allows you to upload PDF files and search for the most relevant pages based on your query. Refresh the page if you change documents ! ⚠️ This model performs best on English documents, and does not generalize well to other languages. """) with gr.Row(): with gr.Column(scale=2): gr.Markdown("## 1️⃣ Upload PDFs") file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs") convert_button = gr.Button("🔄 Index documents") message = gr.Textbox("Files not yet uploaded", label="Status") embeds = gr.State(value=[]) imgs = gr.State(value=[]) with gr.Column(scale=3): gr.Markdown("## 2️⃣ Search") query = gr.Textbox(placeholder="Enter your query here", label="Query") k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5) # Define the actions search_button = gr.Button("🔍 Search", variant="primary") output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True) convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery]) if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)