Spaces:
Running
on
Zero
Running
on
Zero
ahmed-masry
commited on
Update modeling_colflor.py
Browse files- modeling_colflor.py +94 -95
modeling_colflor.py
CHANGED
@@ -1,96 +1,95 @@
|
|
1 |
-
from typing import ClassVar
|
2 |
-
|
3 |
-
|
4 |
-
import
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
""
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
self.
|
21 |
-
|
22 |
-
|
23 |
-
self.custom_text_proj.
|
24 |
-
|
25 |
-
|
26 |
-
self.
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
#
|
50 |
-
proj = proj
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
""
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
self.
|
67 |
-
|
68 |
-
|
69 |
-
self.custom_text_proj.
|
70 |
-
|
71 |
-
|
72 |
-
self.
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
#
|
93 |
-
proj = proj
|
94 |
-
|
95 |
-
|
96 |
return proj
|
|
|
1 |
+
from typing import ClassVar
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from modeling_florence2 import Florence2ForConditionalGeneration, Florence2VisionLanguageModel
|
6 |
+
from configuration_florence2 import Florence2Config
|
7 |
+
|
8 |
+
|
9 |
+
class ColFlor2Old(Florence2ForConditionalGeneration):
|
10 |
+
"""
|
11 |
+
ColFlor2 model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|
12 |
+
"""
|
13 |
+
|
14 |
+
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
15 |
+
|
16 |
+
def __init__(self, config: Florence2Config, use_cache=False):
|
17 |
+
super().__init__(config=config)
|
18 |
+
|
19 |
+
self.dim = 128
|
20 |
+
self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)
|
21 |
+
# Now initialize weights properly
|
22 |
+
self.custom_text_proj.weight.data.normal_(mean=0.0, std=0.02)
|
23 |
+
self.custom_text_proj.bias.data.zero_()
|
24 |
+
|
25 |
+
self.padding_side = "right"
|
26 |
+
self.post_init()
|
27 |
+
|
28 |
+
def forward(self, *args, **kwargs) -> torch.Tensor:
|
29 |
+
# Delete output_hidden_states from kwargs
|
30 |
+
kwargs.pop("output_hidden_states", None)
|
31 |
+
|
32 |
+
# TO BE DELETED
|
33 |
+
kwargs['decoder_input_ids'] = kwargs['input_ids']
|
34 |
+
|
35 |
+
# Create Full Attention Mask that includes the image
|
36 |
+
if 'full_attention_mask' in kwargs:
|
37 |
+
full_attention_mask = kwargs['full_attention_mask']
|
38 |
+
del kwargs['full_attention_mask']
|
39 |
+
else:
|
40 |
+
full_attention_mask = kwargs['attention_mask']
|
41 |
+
|
42 |
+
outputs = super().forward(*args,
|
43 |
+
**kwargs) # (batch_size, sequence_length, hidden_size)
|
44 |
+
|
45 |
+
last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size)
|
46 |
+
|
47 |
+
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
48 |
+
# L2 normalization
|
49 |
+
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
50 |
+
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
51 |
+
|
52 |
+
return proj
|
53 |
+
|
54 |
+
|
55 |
+
class ColFlor(Florence2VisionLanguageModel):
|
56 |
+
"""
|
57 |
+
ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|
58 |
+
"""
|
59 |
+
|
60 |
+
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
61 |
+
|
62 |
+
def __init__(self, config: Florence2Config, use_cache=False):
|
63 |
+
super().__init__(config=config)
|
64 |
+
|
65 |
+
self.dim = 128
|
66 |
+
self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)
|
67 |
+
# Now initialize weights properly
|
68 |
+
self.custom_text_proj.weight.data.normal_(mean=0.0, std=0.02)
|
69 |
+
self.custom_text_proj.bias.data.zero_()
|
70 |
+
|
71 |
+
self.padding_side = "right"
|
72 |
+
self.post_init()
|
73 |
+
|
74 |
+
def forward(self, *args, **kwargs) -> torch.Tensor:
|
75 |
+
# Delete output_hidden_states from kwargs
|
76 |
+
kwargs.pop("output_hidden_states", None)
|
77 |
+
|
78 |
+
# Create Full Attention Mask that includes both the image and text
|
79 |
+
if 'full_attention_mask' in kwargs:
|
80 |
+
full_attention_mask = kwargs['full_attention_mask']
|
81 |
+
del kwargs['full_attention_mask']
|
82 |
+
else:
|
83 |
+
full_attention_mask = kwargs['attention_mask']
|
84 |
+
|
85 |
+
outputs = super().forward(*args,
|
86 |
+
**kwargs) # (batch_size, sequence_length, hidden_size)
|
87 |
+
|
88 |
+
last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size)
|
89 |
+
|
90 |
+
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
91 |
+
# L2 normalization
|
92 |
+
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
93 |
+
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
94 |
+
|
|
|
95 |
return proj
|