diff --git "a/modeling_florence2.py" "b/modeling_florence2.py"
--- "a/modeling_florence2.py"
+++ "b/modeling_florence2.py"
@@ -1,3109 +1,3109 @@
-# coding=utf-8
-# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-""" PyTorch Florence-2 model."""
-from dataclasses import dataclass
-from typing import List, Optional, Tuple, Union
-
-import math
-import torch
-import torch.utils.checkpoint
-from torch import nn
-import torch.nn.functional as F
-import torch.utils.checkpoint as checkpoint
-from torch.nn import CrossEntropyLoss
-from collections import OrderedDict
-from einops import rearrange
-from timm.models.layers import DropPath, trunc_normal_
-
-from transformers.modeling_utils import PreTrainedModel
-from transformers.utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- is_flash_attn_2_available,
- logging,
- replace_return_docstrings,
- is_flash_attn_2_available,
- is_flash_attn_greater_or_equal_2_10,
-)
-from .configuration_florence2 import Florence2Config
-from .configuration_florence2 import Florence2LanguageConfig
-from .configuration_florence2 import Florence2VisionConfig
-
-
-from transformers.activations import ACT2FN
-from transformers.modeling_attn_mask_utils import (
- _prepare_4d_attention_mask,
- _prepare_4d_attention_mask_for_sdpa,
- _prepare_4d_causal_attention_mask,
- _prepare_4d_causal_attention_mask_for_sdpa,
-)
-from transformers.modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPastAndCrossAttentions,
- Seq2SeqLMOutput,
- Seq2SeqModelOutput,
-)
-
-
-if is_flash_attn_2_available():
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
-
-logger = logging.get_logger(__name__)
-
-_CONFIG_FOR_DOC = "Florence2Config"
-
-class LearnedAbsolutePositionEmbedding2D(nn.Module):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
-
- def __init__(self, embedding_dim=256, num_pos=50):
- super().__init__()
- self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
- self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2))
-
- def forward(self, pixel_values):
- """
- pixel_values: (batch_size, height, width, num_channels)
- returns: (batch_size, height, width, embedding_dim * 2)
- """
- if len(pixel_values.shape) != 4:
- raise ValueError('pixel_values must be a 4D tensor')
- height, width = pixel_values.shape[1:3]
- width_values = torch.arange(width, device=pixel_values.device)
- height_values = torch.arange(height, device=pixel_values.device)
- x_emb = self.column_embeddings(width_values)
- y_emb = self.row_embeddings(height_values)
- # (height, width, embedding_dim * 2)
- pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
- # (embedding_dim * 2, height, width)
- pos = pos.permute(2, 0, 1)
- pos = pos.unsqueeze(0)
- # (batch_size, embedding_dim * 2, height, width)
- pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
- # (batch_size, height, width, embedding_dim * 2)
- pos = pos.permute(0, 2, 3, 1)
- return pos
-
-class PositionalEmbeddingCosine1D(nn.Module):
- """
- This class implements a very simple positional encoding. It follows closely
- the encoder from the link below:
- https://pytorch.org/tutorials/beginner/translation_transformer.html
-
- Args:
- embed_dim: The dimension of the embeddings.
- dropout_prob: The dropout probability.
- max_seq_len: The maximum length to precompute the positional encodings.
- """
- def __init__(
- self,
- embed_dim: int = 512,
- max_seq_len: int = 1024) -> None:
- super(PositionalEmbeddingCosine1D, self).__init__()
- self.embed_dim = embed_dim
- self.max_seq_len = max_seq_len
- # Generate the sinusoidal arrays.
- factor = math.log(10000)
- denominator = torch.exp(
- -factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim)
- # Matrix where rows correspond to a positional embedding as a function
- # of the position index (i.e., the row index).
- frequencies = \
- torch.arange(0, self.max_seq_len) \
- .reshape(self.max_seq_len, 1) * denominator
- pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
- # Populate uneven entries.
- pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
- pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
- # Save the positional embeddings in a constant buffer.
- self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
-
- def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
- """
- Args:
- seq_embeds: The sequence embeddings in order. Allowed size:
- 1. [T, D], where T is the length of the sequence, and D is the
- frame embedding dimension.
- 2. [B, T, D], where B is the batch size and T and D are the
- same as above.
-
- Returns a tensor of with the same dimensions as the input: i.e.,
- [1, T, D] or [T, D].
- """
- shape_len = len(seq_embeds.shape)
- assert 2 <= shape_len <= 3
- len_seq = seq_embeds.size(-2)
- assert len_seq <= self.max_seq_len
- pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
- # Adapt pre-computed positional embeddings to the input.
- if shape_len == 3:
- pos_embeds = pos_embeds.view(
- (1, pos_embeds.size(0), pos_embeds.size(1)))
- return pos_embeds
-
-
-class LearnedAbsolutePositionEmbedding1D(nn.Module):
- """
- Learnable absolute positional embeddings for 1D sequences.
-
- Args:
- embed_dim: The dimension of the embeddings.
- max_seq_len: The maximum length to precompute the positional encodings.
- """
- def __init__(
- self,
- embedding_dim: int = 512,
- num_pos: int = 1024) -> None:
- super(LearnedAbsolutePositionEmbedding1D, self).__init__()
- self.embeddings = nn.Embedding(num_pos, embedding_dim)
- self.num_pos = num_pos
-
- def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
- """
- Args:
- seq_embeds: The sequence embeddings in order. Allowed size:
- 1. [T, D], where T is the length of the sequence, and D is the
- frame embedding dimension.
- 2. [B, T, D], where B is the batch size and T and D are the
- same as above.
-
- Returns a tensor of with the same dimensions as the input: i.e.,
- [1, T, D] or [T, D].
- """
- shape_len = len(seq_embeds.shape)
- assert 2 <= shape_len <= 3
- len_seq = seq_embeds.size(-2)
- assert len_seq <= self.num_pos
- # [T, D]
- pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
- # Adapt pre-computed positional embeddings to the input.
- if shape_len == 3:
- pos_embeds = pos_embeds.view(
- (1, pos_embeds.size(0), pos_embeds.size(1)))
- return pos_embeds
-
-
-
-class MySequential(nn.Sequential):
- def forward(self, *inputs):
- for module in self._modules.values():
- if type(inputs) == tuple:
- inputs = module(*inputs)
- else:
- inputs = module(inputs)
- return inputs
-
-
-class PreNorm(nn.Module):
- def __init__(self, norm, fn, drop_path=None):
- super().__init__()
- self.norm = norm
- self.fn = fn
- self.drop_path = drop_path
-
- def forward(self, x, *args, **kwargs):
- shortcut = x
- if self.norm != None:
- x, size = self.fn(self.norm(x), *args, **kwargs)
- else:
- x, size = self.fn(x, *args, **kwargs)
-
- if self.drop_path:
- x = self.drop_path(x)
-
- x = shortcut + x
-
- return x, size
-
-
-class Mlp(nn.Module):
- def __init__(
- self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- ):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.net = nn.Sequential(OrderedDict([
- ("fc1", nn.Linear(in_features, hidden_features)),
- ("act", act_layer()),
- ("fc2", nn.Linear(hidden_features, out_features))
- ]))
-
- def forward(self, x, size):
- return self.net(x), size
-
-
-class DepthWiseConv2d(nn.Module):
- def __init__(
- self,
- dim_in,
- kernel_size,
- padding,
- stride,
- bias=True,
- ):
- super().__init__()
- self.dw = nn.Conv2d(
- dim_in, dim_in,
- kernel_size=kernel_size,
- padding=padding,
- groups=dim_in,
- stride=stride,
- bias=bias
- )
-
- def forward(self, x, size):
- B, N, C = x.shape
- H, W = size
- assert N == H * W
-
- x = self.dw(x.transpose(1, 2).view(B, C, H, W))
- size = (x.size(-2), x.size(-1))
- x = x.flatten(2).transpose(1, 2)
- return x, size
-
-
-class ConvEmbed(nn.Module):
- """ Image to Patch Embedding
- """
-
- def __init__(
- self,
- patch_size=7,
- in_chans=3,
- embed_dim=64,
- stride=4,
- padding=2,
- norm_layer=None,
- pre_norm=True
- ):
- super().__init__()
- self.patch_size = patch_size
-
- self.proj = nn.Conv2d(
- in_chans, embed_dim,
- kernel_size=patch_size,
- stride=stride,
- padding=padding
- )
-
- dim_norm = in_chans if pre_norm else embed_dim
- self.norm = norm_layer(dim_norm) if norm_layer else None
-
- self.pre_norm = pre_norm
-
- def forward(self, x, size):
- H, W = size
- if len(x.size()) == 3:
- if self.norm and self.pre_norm:
- x = self.norm(x)
- x = rearrange(
- x, 'b (h w) c -> b c h w',
- h=H, w=W
- )
-
- x = self.proj(x)
-
- _, _, H, W = x.shape
- x = rearrange(x, 'b c h w -> b (h w) c')
- if self.norm and not self.pre_norm:
- x = self.norm(x)
-
- return x, (H, W)
-
-
-class ChannelAttention(nn.Module):
-
- def __init__(self, dim, groups=8, qkv_bias=True):
- super().__init__()
-
- self.groups = groups
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.proj = nn.Linear(dim, dim)
-
- def forward(self, x, size):
- B, N, C = x.shape
-
- qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2]
-
- q = q * (float(N) ** -0.5)
- attention = q.transpose(-1, -2) @ k
- attention = attention.softmax(dim=-1)
- x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
- x = x.transpose(1, 2).reshape(B, N, C)
- x = self.proj(x)
- return x, size
-
-
-class ChannelBlock(nn.Module):
-
- def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
- drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
- conv_at_attn=True, conv_at_ffn=True):
- super().__init__()
-
- drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
-
- self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
- self.channel_attn = PreNorm(
- norm_layer(dim),
- ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
- drop_path
- )
- self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
- self.ffn = PreNorm(
- norm_layer(dim),
- Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
- drop_path
- )
-
- def forward(self, x, size):
- if self.conv1:
- x, size = self.conv1(x, size)
- x, size = self.channel_attn(x, size)
-
- if self.conv2:
- x, size = self.conv2(x, size)
- x, size = self.ffn(x, size)
-
- return x, size
-
-
-def window_partition(x, window_size: int):
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
-
-
-def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
- B = batch_size
- # this will cause onnx conversion failed for dynamic axis, because treated as constant
- # int(windows.shape[0] / (H * W / window_size / window_size))
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
-
-
-class WindowAttention(nn.Module):
- def __init__(self, dim, num_heads, window_size, qkv_bias=True):
-
- super().__init__()
- self.dim = dim
- self.window_size = window_size
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = float(head_dim) ** -0.5
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.proj = nn.Linear(dim, dim)
-
- self.softmax = nn.Softmax(dim=-1)
-
- def forward(self, x, size):
-
- H, W = size
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
-
- x = x.view(B, H, W, C)
-
- pad_l = pad_t = 0
- pad_r = (self.window_size - W % self.window_size) % self.window_size
- pad_b = (self.window_size - H % self.window_size) % self.window_size
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
- _, Hp, Wp, _ = x.shape
-
- x = window_partition(x, self.window_size)
- x = x.view(-1, self.window_size * self.window_size, C)
-
- # W-MSA/SW-MSA
- # attn_windows = self.attn(x_windows)
-
- B_, N, C = x.shape
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2]
-
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
- attn = self.softmax(attn)
-
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
-
- # merge windows
- x = x.view(
- -1, self.window_size, self.window_size, C
- )
- x = window_reverse(x, B, self.window_size, Hp, Wp)
-
- if pad_r > 0 or pad_b > 0:
- x = x[:, :H, :W, :].contiguous()
-
- x = x.view(B, H * W, C)
-
- return x, size
-
-
-class SpatialBlock(nn.Module):
-
- def __init__(self, dim, num_heads, window_size,
- mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
- norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
- super().__init__()
-
- drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
-
- self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
- self.window_attn = PreNorm(
- norm_layer(dim),
- WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
- drop_path
- )
- self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
- self.ffn = PreNorm(
- norm_layer(dim),
- Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
- drop_path
- )
-
- def forward(self, x, size):
- if self.conv1:
- x, size = self.conv1(x, size)
- x, size = self.window_attn(x, size)
-
- if self.conv2:
- x, size = self.conv2(x, size)
- x, size = self.ffn(x, size)
- return x, size
-
-
-class DaViT(nn.Module):
- """ DaViT: Dual-Attention Transformer
-
- Args:
- in_chans (int): Number of input image channels. Default: 3.
- num_classes (int): Number of classes for classification head. Default: 1000.
- patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
- patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
- patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
- patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
- embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
- num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
- num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
- window_size (int): Window size. Default: 7.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
- drop_path_rate (float): Stochastic depth rate. Default: 0.1.
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
- enable_checkpoint (bool): If True, enable checkpointing. Default: False.
- conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
- conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
- """
-
- def __init__(
- self,
- in_chans=3,
- num_classes=1000,
- depths=(1, 1, 3, 1),
- patch_size=(7, 2, 2, 2),
- patch_stride=(4, 2, 2, 2),
- patch_padding=(3, 0, 0, 0),
- patch_prenorm=(False, False, False, False),
- embed_dims=(64, 128, 192, 256),
- num_heads=(3, 6, 12, 24),
- num_groups=(3, 6, 12, 24),
- window_size=7,
- mlp_ratio=4.,
- qkv_bias=True,
- drop_path_rate=0.1,
- norm_layer=nn.LayerNorm,
- enable_checkpoint=False,
- conv_at_attn=True,
- conv_at_ffn=True,
- ):
- super().__init__()
-
- self.num_classes = num_classes
- self.embed_dims = embed_dims
- self.num_heads = num_heads
- self.num_groups = num_groups
- self.num_stages = len(self.embed_dims)
- self.enable_checkpoint = enable_checkpoint
- assert self.num_stages == len(self.num_heads) == len(self.num_groups)
-
- num_stages = len(embed_dims)
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]
-
- depth_offset = 0
- convs = []
- blocks = []
- for i in range(num_stages):
- conv_embed = ConvEmbed(
- patch_size=patch_size[i],
- stride=patch_stride[i],
- padding=patch_padding[i],
- in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
- embed_dim=self.embed_dims[i],
- norm_layer=norm_layer,
- pre_norm=patch_prenorm[i]
- )
- convs.append(conv_embed)
-
- block = MySequential(
- *[
- MySequential(OrderedDict([
- (
- 'spatial_block', SpatialBlock(
- embed_dims[i],
- num_heads[i],
- window_size,
- drop_path_rate=dpr[depth_offset+j*2],
- qkv_bias=qkv_bias,
- mlp_ratio=mlp_ratio,
- conv_at_attn=conv_at_attn,
- conv_at_ffn=conv_at_ffn,
- )
- ),
- (
- 'channel_block', ChannelBlock(
- embed_dims[i],
- num_groups[i],
- drop_path_rate=dpr[depth_offset+j*2+1],
- qkv_bias=qkv_bias,
- mlp_ratio=mlp_ratio,
- conv_at_attn=conv_at_attn,
- conv_at_ffn=conv_at_ffn,
- )
- )
- ])) for j in range(depths[i])
- ]
- )
- blocks.append(block)
- depth_offset += depths[i]*2
-
- self.convs = nn.ModuleList(convs)
- self.blocks = nn.ModuleList(blocks)
-
- self.norms = norm_layer(self.embed_dims[-1])
- self.avgpool = nn.AdaptiveAvgPool1d(1)
- self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
-
- self.apply(self._init_weights)
-
- @property
- def dim_out(self):
- return self.embed_dims[-1]
-
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, std=0.02)
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Conv2d):
- nn.init.normal_(m.weight, std=0.02)
- for name, _ in m.named_parameters():
- if name in ['bias']:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.weight, 1.0)
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1.0)
- nn.init.constant_(m.bias, 0)
-
- def forward_features_unpool(self, x):
- """
- forward until avg pooling
- Args:
- x (_type_): input image tensor
- """
- input_size = (x.size(2), x.size(3))
- for conv, block in zip(self.convs, self.blocks):
- x, input_size = conv(x, input_size)
- if self.enable_checkpoint:
- x, input_size = checkpoint.checkpoint(block, x, input_size)
- else:
- x, input_size = block(x, input_size)
- return x
-
- def forward_features(self, x):
- x = self.forward_features_unpool(x)
-
- # (batch_size, num_tokens, token_dim)
- x = self.avgpool(x.transpose(1, 2))
- # (batch_size, 1, num_tokens)
- x = torch.flatten(x, 1)
- x = self.norms(x)
-
- return x
-
- def forward(self, x):
- x = self.forward_features(x)
- x = self.head(x)
- return x
-
- @classmethod
- def from_config(cls, config):
- return cls(
- depths=config.depths,
- embed_dims=config.dim_embed,
- num_heads=config.num_heads,
- num_groups=config.num_groups,
- patch_size=config.patch_size,
- patch_stride=config.patch_stride,
- patch_padding=config.patch_padding,
- patch_prenorm=config.patch_prenorm,
- drop_path_rate=config.drop_path_rate,
- window_size=config.window_size,
- )
-
-
-
-
-if is_flash_attn_2_available():
- from flash_attn import flash_attn_func, flash_attn_varlen_func
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
-
-# Copied from transformers.models.llama.modeling_llama._get_unpad_data
-def _get_unpad_data(attention_mask):
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
- max_seqlen_in_batch = seqlens_in_batch.max().item()
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
- return (
- indices,
- cu_seqlens,
- max_seqlen_in_batch,
- )
-
-
-def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
- """
- Shift input ids one token to the right.
- """
- shifted_input_ids = input_ids.new_zeros(input_ids.shape)
- shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
- shifted_input_ids[:, 0] = decoder_start_token_id
-
- if pad_token_id is None:
- raise ValueError("self.model.config.pad_token_id has to be defined.")
- # replace possible -100 values in labels by `pad_token_id`
- shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
-
- return shifted_input_ids
-
-
-class Florence2LearnedPositionalEmbedding(nn.Embedding):
- """
- This module learns positional embeddings up to a fixed maximum size.
- """
-
- def __init__(self, num_embeddings: int, embedding_dim: int):
- # Florence2 is set up so that if padding_idx is specified then offset the embedding ids by 2
- # and adjust num_embeddings appropriately. Other models don't have this hack
- self.offset = 2
- super().__init__(num_embeddings + self.offset, embedding_dim)
-
- def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
- """`input_ids' shape is expected to be [bsz x seqlen]."""
-
- bsz, seq_len = input_ids.shape[:2]
- positions = torch.arange(
- past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
- ).expand(bsz, -1)
-
- return super().forward(positions + self.offset)
-
-
-class Florence2ScaledWordEmbedding(nn.Embedding):
- """
- This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
- """
-
- def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
- super().__init__(num_embeddings, embedding_dim, padding_idx)
- self.embed_scale = embed_scale
-
- def forward(self, input_ids: torch.Tensor):
- return super().forward(input_ids) * self.embed_scale
-
-
-class Florence2Attention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
-
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- dropout: float = 0.0,
- is_decoder: bool = False,
- bias: bool = True,
- is_causal: bool = False,
- config: Optional[Florence2LanguageConfig] = None,
- ):
- super().__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.dropout = dropout
- self.head_dim = embed_dim // num_heads
- self.config = config
-
- if (self.head_dim * num_heads) != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
- f" and `num_heads`: {num_heads})."
- )
- self.scaling = self.head_dim**-0.5
- self.is_decoder = is_decoder
- self.is_causal = is_causal
-
- self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
- self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
-
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
-
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
-
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
-
- bsz, tgt_len, _ = hidden_states.size()
-
- # get query proj
- query_states = self.q_proj(hidden_states) * self.scaling
- # get key, value proj
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
- # is checking that the `sequence_length` of the `past_key_value` is the same as
- # the provided `key_value_states` to support prefix tuning
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
-
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
-
- proj_shape = (bsz * self.num_heads, -1, self.head_dim)
- query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
- key_states = key_states.reshape(*proj_shape)
- value_states = value_states.reshape(*proj_shape)
-
- src_len = key_states.size(1)
- attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
-
- if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
- raise ValueError(
- f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
- f" {attn_weights.size()}"
- )
-
- if attention_mask is not None:
- if attention_mask.size() != (bsz, 1, tgt_len, src_len):
- raise ValueError(
- f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
- )
- attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
-
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
-
- if layer_head_mask is not None:
- if layer_head_mask.size() != (self.num_heads,):
- raise ValueError(
- f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
- f" {layer_head_mask.size()}"
- )
- attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
-
- if output_attentions:
- # this operation is a bit awkward, but it's required to
- # make sure that attn_weights keeps its gradient.
- # In order to do so, attn_weights have to be reshaped
- # twice and have to be reused in the following
- attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
- attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
- else:
- attn_weights_reshaped = None
-
- attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
-
- attn_output = torch.bmm(attn_probs, value_states)
-
- if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
-
- attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
- attn_output = attn_output.transpose(1, 2)
-
- # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
- # partitioned across GPUs when using tensor-parallelism.
- attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
-
- attn_output = self.out_proj(attn_output)
-
- return attn_output, attn_weights_reshaped, past_key_value
-
-
-class Florence2FlashAttention2(Florence2Attention):
- """
- Florence2 flash attention module. This module inherits from `Florence2Attention` as the weights of the module stays
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
- flash attention and deal with padding tokens in case the input contains any of them.
- """
-
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
-
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
-
- def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
-
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- # Florence2FlashAttention2 attention does not support output_attentions
- if output_attentions:
- raise ValueError("Florence2FlashAttention2 attention does not support output_attentions")
-
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
-
- bsz, q_len, _ = hidden_states.size()
-
- # get query proj
- query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
- # get key, value proj
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
- # is checking that the `sequence_length` of the `past_key_value` is the same as
- # the provided `key_value_states` to support prefix tuning
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- # reuse k,v, cross_attentions
- key_states = past_key_value[0].transpose(1, 2)
- value_states = past_key_value[1].transpose(1, 2)
- elif is_cross_attention:
- # cross_attentions
- key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
- value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
- else:
- # self_attention
- key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
-
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
-
- kv_seq_len = key_states.shape[-2]
- if past_key_value is not None:
- kv_seq_len += past_key_value[0].shape[-2]
-
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
- # therefore the input hidden states gets silently casted in float32. Hence, we need
- # cast them back in the correct dtype just to be sure everything works as expected.
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
- # in fp32. (LlamaRMSNorm handles it correctly)
-
- input_dtype = query_states.dtype
- if input_dtype == torch.float32:
- if torch.is_autocast_enabled():
- target_dtype = torch.get_autocast_gpu_dtype()
- # Handle the case where the model is quantized
- elif hasattr(self.config, "_pre_quantization_dtype"):
- target_dtype = self.config._pre_quantization_dtype
- else:
- target_dtype = self.q_proj.weight.dtype
-
- logger.warning_once(
- f"The input hidden states seems to be silently casted in float32, this might be related to"
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
- f" {target_dtype}."
- )
-
- query_states = query_states.to(target_dtype)
- key_states = key_states.to(target_dtype)
- value_states = value_states.to(target_dtype)
-
- attn_output = self._flash_attention_forward(
- query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
- )
-
- attn_output = attn_output.reshape(bsz, q_len, -1)
- attn_output = self.out_proj(attn_output)
-
- if not output_attentions:
- attn_weights = None
-
- return attn_output, attn_weights, past_key_value
-
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
- def _flash_attention_forward(
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
- ):
- """
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
- first unpad the input, then computes the attention scores and pad the final attention scores.
-
- Args:
- query_states (`torch.Tensor`):
- Input query states to be passed to Flash Attention API
- key_states (`torch.Tensor`):
- Input key states to be passed to Flash Attention API
- value_states (`torch.Tensor`):
- Input value states to be passed to Flash Attention API
- attention_mask (`torch.Tensor`):
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
- position of padding tokens and 1 for the position of non-padding tokens.
- dropout (`float`):
- Attention dropout
- softmax_scale (`float`, *optional*):
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
- """
- if not self._flash_attn_uses_top_left_mask:
- causal = self.is_causal
- else:
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
- causal = self.is_causal and query_length != 1
-
- # Contains at least one padding token in the sequence
- if attention_mask is not None:
- batch_size = query_states.shape[0]
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
- query_states, key_states, value_states, attention_mask, query_length
- )
-
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
-
- attn_output_unpad = flash_attn_varlen_func(
- query_states,
- key_states,
- value_states,
- cu_seqlens_q=cu_seqlens_q,
- cu_seqlens_k=cu_seqlens_k,
- max_seqlen_q=max_seqlen_in_batch_q,
- max_seqlen_k=max_seqlen_in_batch_k,
- dropout_p=dropout,
- softmax_scale=softmax_scale,
- causal=causal,
- )
-
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
- else:
- attn_output = flash_attn_func(
- query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
- )
-
- return attn_output
-
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
-
- key_layer = index_first_axis(
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
- )
- value_layer = index_first_axis(
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
- )
- if query_length == kv_seq_len:
- query_layer = index_first_axis(
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
- )
- cu_seqlens_q = cu_seqlens_k
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
- indices_q = indices_k
- elif query_length == 1:
- max_seqlen_in_batch_q = 1
- cu_seqlens_q = torch.arange(
- batch_size + 1, dtype=torch.int32, device=query_layer.device
- ) # There is a memcpy here, that is very bad.
- indices_q = cu_seqlens_q[:-1]
- query_layer = query_layer.squeeze(1)
- else:
- # The -q_len: slice assumes left padding.
- attention_mask = attention_mask[:, -query_length:]
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
-
- return (
- query_layer,
- key_layer,
- value_layer,
- indices_q,
- (cu_seqlens_q, cu_seqlens_k),
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
- )
-
-
-class Florence2SdpaAttention(Florence2Attention):
- def forward(
- self,
- hidden_states: torch.Tensor,
- key_value_states: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
- """Input shape: Batch x Time x Channel"""
- if output_attentions or layer_head_mask is not None:
- # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
- logger.warning_once(
- "Florence2Model is using Florence2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
- ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
- )
- return super().forward(
- hidden_states,
- key_value_states=key_value_states,
- past_key_value=past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
-
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
-
- bsz, tgt_len, _ = hidden_states.size()
-
- # get query proj
- query_states = self.q_proj(hidden_states)
- # get key, value proj
- # `past_key_value[0].shape[2] == key_value_states.shape[1]`
- # is checking that the `sequence_length` of the `past_key_value` is the same as
- # the provided `key_value_states` to support prefix tuning
- if (
- is_cross_attention
- and past_key_value is not None
- and past_key_value[0].shape[2] == key_value_states.shape[1]
- ):
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
- value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
- elif past_key_value is not None:
- # reuse k, v, self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
- else:
- # self_attention
- key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
- value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
-
- if self.is_decoder:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
-
- query_states = self._shape(query_states, tgt_len, bsz)
-
- # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
- # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
- # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
- is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
-
- # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
- # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
- attn_output = torch.nn.functional.scaled_dot_product_attention(
- query_states,
- key_states,
- value_states,
- attn_mask=attention_mask,
- dropout_p=self.dropout if self.training else 0.0,
- is_causal=is_causal,
- )
-
- if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
- raise ValueError(
- f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
- f" {attn_output.size()}"
- )
-
- attn_output = attn_output.transpose(1, 2)
-
- # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
- # partitioned across GPUs when using tensor-parallelism.
- attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
-
- attn_output = self.out_proj(attn_output)
-
- return attn_output, None, past_key_value
-
-
-FLORENCE2_ATTENTION_CLASSES = {
- "eager": Florence2Attention,
- "sdpa": Florence2SdpaAttention,
- "flash_attention_2": Florence2FlashAttention2,
-}
-
-
-class Florence2EncoderLayer(nn.Module):
- def __init__(self, config: Florence2LanguageConfig):
- super().__init__()
- self.embed_dim = config.d_model
-
- self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
- embed_dim=self.embed_dim,
- num_heads=config.encoder_attention_heads,
- dropout=config.attention_dropout,
- config=config,
- )
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.dropout = config.dropout
- self.activation_fn = ACT2FN[config.activation_function]
- self.activation_dropout = config.activation_dropout
- self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
- self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
-
- def forward(
- self,
- hidden_states: torch.FloatTensor,
- attention_mask: torch.FloatTensor,
- layer_head_mask: torch.FloatTensor,
- output_attentions: Optional[bool] = False,
- ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
- `(encoder_attention_heads,)`.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
- hidden_states, attn_weights, _ = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
-
- residual = hidden_states
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
- hidden_states = self.fc2(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
-
- if hidden_states.dtype == torch.float16 and (
- torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
- ):
- clamp_value = torch.finfo(hidden_states.dtype).max - 1000
- hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
-
- outputs = (hidden_states,)
-
- if output_attentions:
- outputs += (attn_weights,)
-
- return outputs
-
-
-class Florence2DecoderLayer(nn.Module):
- def __init__(self, config: Florence2LanguageConfig):
- super().__init__()
- self.embed_dim = config.d_model
-
- self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
- embed_dim=self.embed_dim,
- num_heads=config.decoder_attention_heads,
- dropout=config.attention_dropout,
- is_decoder=True,
- is_causal=True,
- config=config,
- )
- self.dropout = config.dropout
- self.activation_fn = ACT2FN[config.activation_function]
- self.activation_dropout = config.activation_dropout
-
- self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.encoder_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
- self.embed_dim,
- config.decoder_attention_heads,
- dropout=config.attention_dropout,
- is_decoder=True,
- config=config,
- )
- self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
- self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
- self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
- self.final_layer_norm = nn.LayerNorm(self.embed_dim)
-
- def forward(
- self,
- hidden_states: torch.Tensor,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- layer_head_mask: Optional[torch.Tensor] = None,
- cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
- output_attentions: Optional[bool] = False,
- use_cache: Optional[bool] = True,
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
- """
- Args:
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
- attention_mask (`torch.FloatTensor`): attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- encoder_hidden_states (`torch.FloatTensor`):
- cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
- encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
- layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
- `(encoder_attention_heads,)`.
- cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
- size `(decoder_attention_heads,)`.
- past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- """
- residual = hidden_states
-
- # Self Attention
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- # add present self-attn cache to positions 1,2 of present_key_value tuple
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- past_key_value=self_attn_past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.self_attn_layer_norm(hidden_states)
-
- # Cross-Attention Block
- cross_attn_present_key_value = None
- cross_attn_weights = None
- if encoder_hidden_states is not None:
- residual = hidden_states
-
- # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
- hidden_states=hidden_states,
- key_value_states=encoder_hidden_states,
- attention_mask=encoder_attention_mask,
- layer_head_mask=cross_attn_layer_head_mask,
- past_key_value=cross_attn_past_key_value,
- output_attentions=output_attentions,
- )
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.encoder_attn_layer_norm(hidden_states)
-
- # add cross-attn to positions 3,4 of present_key_value tuple
- present_key_value = present_key_value + cross_attn_present_key_value
-
- # Fully Connected
- residual = hidden_states
- hidden_states = self.activation_fn(self.fc1(hidden_states))
- hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
- hidden_states = self.fc2(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- hidden_states = residual + hidden_states
- hidden_states = self.final_layer_norm(hidden_states)
-
- outputs = (hidden_states,)
-
- if output_attentions:
- outputs += (self_attn_weights, cross_attn_weights)
-
- if use_cache:
- outputs += (present_key_value,)
-
- return outputs
-
-
-
-class Florence2LanguagePreTrainedModel(PreTrainedModel):
- config_class = Florence2LanguageConfig
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"]
- _no_split_modules = [r"Florence2EncoderLayer", r"Florence2DecoderLayer"]
- _skip_keys_device_placement = "past_key_values"
- _supports_flash_attn_2 = True
- _supports_sdpa = True
-
- def _init_weights(self, module):
- std = self.config.init_std
- if isinstance(module, nn.Linear):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
-
- @property
- def dummy_inputs(self):
- pad_token = self.config.pad_token_id
- input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
- dummy_inputs = {
- "attention_mask": input_ids.ne(pad_token),
- "input_ids": input_ids,
- }
- return dummy_inputs
-
-
-class Florence2Encoder(Florence2LanguagePreTrainedModel):
- """
- Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
- [`Florence2EncoderLayer`].
-
- Args:
- config: Florence2LanguageConfig
- embed_tokens (nn.Embedding): output embedding
- """
-
- def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None):
- super().__init__(config)
-
- self.dropout = config.dropout
- self.layerdrop = config.encoder_layerdrop
-
- embed_dim = config.d_model
- self.padding_idx = config.pad_token_id
- self.max_source_positions = config.max_position_embeddings
- embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
-
- self.embed_tokens = Florence2ScaledWordEmbedding(
- config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
- )
-
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
-
- self.embed_positions = Florence2LearnedPositionalEmbedding(
- config.max_position_embeddings,
- embed_dim,
- )
- self.layers = nn.ModuleList([Florence2EncoderLayer(config) for _ in range(config.encoder_layers)])
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self._use_sdpa = config._attn_implementation == "sdpa"
- self.layernorm_embedding = nn.LayerNorm(embed_dim)
-
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
-
- def get_input_embeddings(self):
- return self.embed_tokens
-
- def set_input_embeddings(self, value):
- self.embed_tokens = value
-
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
-
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
-
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
-
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
-
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
-
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
-
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- # retrieve input_ids and inputs_embeds
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- input = input_ids
- input_ids = input_ids.view(-1, input_ids.shape[-1])
- elif inputs_embeds is not None:
- input = inputs_embeds[:, :, -1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
-
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input_ids)
-
- embed_pos = self.embed_positions(input)
- embed_pos = embed_pos.to(inputs_embeds.device)
-
- hidden_states = inputs_embeds + embed_pos
- hidden_states = self.layernorm_embedding(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
-
- # expand attention_mask
- if attention_mask is not None:
- if self._use_flash_attention_2:
- attention_mask = attention_mask if 0 in attention_mask else None
- elif self._use_sdpa and head_mask is None and not output_attentions:
- # output_attentions=True & head_mask can not be supported when using SDPA, fall back to
- # the manual implementation that requires a 4D causal mask in all cases.
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
- else:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
-
- encoder_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
-
- # check if head_mask has a correct number of layers specified if desired
- if head_mask is not None:
- if head_mask.size()[0] != (len(self.layers)):
- raise ValueError(
- f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
- f" {head_mask.size()[0]}."
- )
-
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- to_drop = False
- if self.training:
- dropout_probability = torch.rand([])
- if dropout_probability < self.layerdrop: # skip the layer
- to_drop = True
-
- if to_drop:
- layer_outputs = (None, None)
- else:
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- encoder_layer.__call__,
- hidden_states,
- attention_mask,
- (head_mask[idx] if head_mask is not None else None),
- output_attentions,
- )
- else:
- layer_outputs = encoder_layer(
- hidden_states,
- attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- output_attentions=output_attentions,
- )
-
- hidden_states = layer_outputs[0]
-
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
-
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
-
- if not return_dict:
- return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
- )
-
-
-class Florence2Decoder(Florence2LanguagePreTrainedModel):
- """
- Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Florence2DecoderLayer`]
-
- Args:
- config: Florence2LanguageConfig
- embed_tokens (nn.Embedding): output embedding
- """
-
- def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None):
- super().__init__(config)
- self.dropout = config.dropout
- self.layerdrop = config.decoder_layerdrop
- self.padding_idx = config.pad_token_id
- self.max_target_positions = config.max_position_embeddings
- embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
-
- self.embed_tokens = Florence2ScaledWordEmbedding(
- config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
- )
-
- if embed_tokens is not None:
- self.embed_tokens.weight = embed_tokens.weight
-
- self.embed_positions = Florence2LearnedPositionalEmbedding(
- config.max_position_embeddings,
- config.d_model,
- )
- self.layers = nn.ModuleList([Florence2DecoderLayer(config) for _ in range(config.decoder_layers)])
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self._use_sdpa = config._attn_implementation == "sdpa"
-
- self.layernorm_embedding = nn.LayerNorm(config.d_model)
-
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
-
- def get_input_embeddings(self):
- return self.embed_tokens
-
- def set_input_embeddings(self, value):
- self.embed_tokens = value
-
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
- encoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
- r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
- provide it.
-
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
-
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
-
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
-
- [What are attention masks?](../glossary#attention-mask)
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
- of the decoder.
- encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
- Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
- selected in `[0, 1]`:
-
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
-
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
-
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
-
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
- cross-attention on hidden heads. Mask values selected in `[0, 1]`:
-
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
-
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
- shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
-
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
- cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
-
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
- that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
- all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert `input_ids` indices into associated vectors
- than the model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
- returned tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
- for more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- # retrieve input_ids and inputs_embeds
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
- elif input_ids is not None:
- input = input_ids
- input_shape = input.shape
- input_ids = input_ids.view(-1, input_shape[-1])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- input = inputs_embeds[:, :, -1]
- else:
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
-
- # past_key_values_length
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
-
- if inputs_embeds is None:
- inputs_embeds = self.embed_tokens(input)
-
- if self._use_flash_attention_2:
- # 2d mask is passed through the layers
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
- elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
- # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
- # the manual implementation that requires a 4D causal mask in all cases.
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
- attention_mask,
- input_shape,
- inputs_embeds,
- past_key_values_length,
- )
- else:
- # 4d mask is passed through the layers
- attention_mask = _prepare_4d_causal_attention_mask(
- attention_mask, input_shape, inputs_embeds, past_key_values_length
- )
-
- # expand encoder attention mask
- if encoder_hidden_states is not None and encoder_attention_mask is not None:
- if self._use_flash_attention_2:
- encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
- elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
- # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
- # the manual implementation that requires a 4D causal mask in all cases.
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
- encoder_attention_mask,
- inputs_embeds.dtype,
- tgt_len=input_shape[-1],
- )
- else:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- encoder_attention_mask = _prepare_4d_attention_mask(
- encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
- )
-
- # embed positions
- positions = self.embed_positions(input, past_key_values_length)
- positions = positions.to(inputs_embeds.device)
-
- hidden_states = inputs_embeds + positions
- hidden_states = self.layernorm_embedding(hidden_states)
-
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
-
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
-
- # decoder layers
- all_hidden_states = () if output_hidden_states else None
- all_self_attns = () if output_attentions else None
- all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
- next_decoder_cache = () if use_cache else None
-
- # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
- for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
- if attn_mask is not None:
- if attn_mask.size()[0] != (len(self.layers)):
- raise ValueError(
- f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
- f" {head_mask.size()[0]}."
- )
-
- for idx, decoder_layer in enumerate(self.layers):
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if self.training:
- dropout_probability = torch.rand([])
- if dropout_probability < self.layerdrop:
- continue
-
- past_key_value = past_key_values[idx] if past_key_values is not None else None
-
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- attention_mask,
- encoder_hidden_states,
- encoder_attention_mask,
- head_mask[idx] if head_mask is not None else None,
- cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
- None,
- output_attentions,
- use_cache,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- cross_attn_layer_head_mask=(
- cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
- ),
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- use_cache=use_cache,
- )
- hidden_states = layer_outputs[0]
-
- if use_cache:
- next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
-
- if output_attentions:
- all_self_attns += (layer_outputs[1],)
-
- if encoder_hidden_states is not None:
- all_cross_attentions += (layer_outputs[2],)
-
- # add hidden states from the last decoder layer
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
-
- next_cache = next_decoder_cache if use_cache else None
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_self_attns,
- cross_attentions=all_cross_attentions,
- )
-
-
-class Florence2LanguageModel(Florence2LanguagePreTrainedModel):
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
-
- def __init__(self, config: Florence2LanguageConfig):
- super().__init__(config)
-
- padding_idx, vocab_size = config.pad_token_id, config.vocab_size
- self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
-
- self.encoder = Florence2Encoder(config, self.shared)
- self.decoder = Florence2Decoder(config, self.shared)
-
- # Initialize weights and apply final processing
- self.post_init()
-
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
- self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
-
- def get_input_embeddings(self):
- return self.shared
-
- def set_input_embeddings(self, value):
- self.shared = value
- self.encoder.embed_tokens = self.shared
- self.decoder.embed_tokens = self.shared
-
- def get_encoder(self):
- return self.encoder
-
- def get_decoder(self):
- return self.decoder
-
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqModelOutput]:
- # different to other models, Florence2 automatically creates decoder_input_ids from
- # input_ids if no decoder_input_ids are provided
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- if input_ids is None:
- raise ValueError(
- "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
- "passed, `input_ids` cannot be `None`. Please pass either "
- "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
- )
-
- decoder_input_ids = shift_tokens_right(
- input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
- )
-
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- if encoder_outputs is None:
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
- elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
- encoder_outputs = BaseModelOutput(
- last_hidden_state=encoder_outputs[0],
- hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
- attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
- )
-
- # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
-# decoder_outputs = self.decoder(
-# input_ids=decoder_input_ids,
-# attention_mask=decoder_attention_mask,
-# encoder_hidden_states=encoder_outputs[0],
-# encoder_attention_mask=attention_mask,
-# head_mask=decoder_head_mask,
-# cross_attn_head_mask=cross_attn_head_mask,
-# past_key_values=past_key_values,
-# inputs_embeds=decoder_inputs_embeds,
-# use_cache=use_cache,
-# output_attentions=output_attentions,
-# output_hidden_states=output_hidden_states,
-# return_dict=return_dict,
-# )
-
- if not return_dict:
- return encoder_outputs #decoder_outputs + encoder_outputs
-
- return Seq2SeqModelOutput(
- #last_hidden_state=decoder_outputs.last_hidden_state,
- #past_key_values=decoder_outputs.past_key_values,
- #decoder_hidden_states=decoder_outputs.hidden_states,
- #decoder_attentions=decoder_outputs.attentions,
- #cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
-
-
-class Florence2LanguageForConditionalGeneration(Florence2LanguagePreTrainedModel):
- base_model_prefix = "model"
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
- _keys_to_ignore_on_load_missing = ["final_logits_bias"]
-
- def __init__(self, config: Florence2LanguageConfig):
- super().__init__(config)
- self.model = Florence2LanguageModel(config)
- self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
- self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
-
- # Initialize weights and apply final processing
- self.post_init()
-
- def get_encoder(self):
- return self.model.get_encoder()
-
- def get_decoder(self):
- return self.model.get_decoder()
-
- def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
- new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
- self._resize_final_logits_bias(new_embeddings.weight.shape[0])
- return new_embeddings
-
- def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
- old_num_tokens = self.final_logits_bias.shape[-1]
- if new_num_tokens <= old_num_tokens:
- new_bias = self.final_logits_bias[:, :new_num_tokens]
- else:
- extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
- new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
- self.register_buffer("final_logits_bias", new_bias)
-
- def get_output_embeddings(self):
- return self.lm_head
-
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
-
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
-
- Returns:
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- if labels is not None:
- if use_cache:
- logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
- use_cache = False
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- decoder_input_ids = shift_tokens_right(
- labels, self.config.pad_token_id, self.config.decoder_start_token_id
- )
-
- outputs = self.model(
- input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- encoder_outputs=encoder_outputs,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- #lm_logits = self.lm_head(outputs[0])
- #lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
-
- #masked_lm_loss = None
- #if labels is not None:
- # labels = labels.to(lm_logits.device)
- # loss_fct = CrossEntropyLoss()
- # masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
-
- #if not return_dict:
- # output = (lm_logits,) + outputs[1:]
- # return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
-
- return Seq2SeqLMOutput(
- #loss=masked_lm_loss,
- #logits=lm_logits,
- #past_key_values=outputs.past_key_values,
- #decoder_hidden_states=outputs.decoder_hidden_states,
- #decoder_attentions=outputs.decoder_attentions,
- #cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- )
-
- def prepare_inputs_for_generation(
- self,
- decoder_input_ids,
- past_key_values=None,
- attention_mask=None,
- decoder_attention_mask=None,
- head_mask=None,
- decoder_head_mask=None,
- cross_attn_head_mask=None,
- use_cache=None,
- encoder_outputs=None,
- **kwargs,
- ):
- # cut decoder_input_ids if past_key_values is used
- if past_key_values is not None:
- past_length = past_key_values[0][0].shape[2]
-
- # Some generation methods already pass only the last input ID
- if decoder_input_ids.shape[1] > past_length:
- remove_prefix_length = past_length
- else:
- # Default to old behavior: keep only final ID
- remove_prefix_length = decoder_input_ids.shape[1] - 1
-
- decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
-
- return {
- "input_ids": None, # encoder_outputs is defined. input_ids not needed
- "encoder_outputs": encoder_outputs,
- "past_key_values": past_key_values,
- "decoder_input_ids": decoder_input_ids,
- "attention_mask": attention_mask,
- "decoder_attention_mask": decoder_attention_mask,
- "head_mask": head_mask,
- "decoder_head_mask": decoder_head_mask,
- "cross_attn_head_mask": cross_attn_head_mask,
- "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
- }
-
- def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
- return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
-
- @staticmethod
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- # cached cross_attention states don't have to be reordered -> they are always the same
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
- + layer_past[2:],
- )
- return reordered_past
-
-@dataclass
-class Florence2Seq2SeqLMOutput(ModelOutput):
- """
- Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential
- decoding.
-
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss.
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
- Sequence of hidden-states at the output of the last layer of the decoder of the model.
-
- If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
- hidden_size)` is output.
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
-
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
- decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
-
- Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
- decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
-
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
-
- Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
- weighted average in the cross-attention heads.
- encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder of the model.
- encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
-
- Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
- encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
-
- Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
- Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size,
- num_image_tokens, hidden_size)`.
-
- image_hidden_states of the model produced by the vision encoder
- """
- loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- last_hidden_state: torch.FloatTensor = None
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
- decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- encoder_last_hidden_state: Optional[torch.FloatTensor] = None
- encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
-
-
-@dataclass
-class Florence2VisionLMOutput(ModelOutput):
- """
- Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential
- decoding.
- Args:
- encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder of the model.
- encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
- one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
- Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
- encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`.
- Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
- Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size,
- num_image_tokens, hidden_size)`.
- image_hidden_states of the model produced by the vision encoder
- """
- encoder_last_hidden_state: Optional[torch.FloatTensor] = None
- encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
- encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
- image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
-
-FLORENCE2_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
-
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
-
- Parameters:
- config ([`Florence2Config`] or [`Florence2VisionConfig`]):
- Model configuration class with all the parameters of the model. Initializing with a config file does not
- load the weights associated with the model, only the configuration. Check out the
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
-"""
-
-
-@add_start_docstrings(
- "The bare Florence-2 Model outputting raw hidden-states without any specific head on top.",
- FLORENCE2_START_DOCSTRING,
-)
-class Florence2PreTrainedModel(PreTrainedModel):
- config_class = Florence2Config
- base_model_prefix = "model"
- supports_gradient_checkpointing = True
- _skip_keys_device_placement = "past_key_values"
-
- @property
- def _supports_flash_attn_2(self):
- """
- Retrieve language_model's attribute to check whether the model supports
- Flash Attention 2 or not.
- """
- return self.language_model._supports_flash_attn_2
-
- @property
- def _supports_sdpa(self):
- """
- Retrieve language_model's attribute to check whether the model supports
- SDPA or not.
- """
- return self.language_model._supports_sdpa
-
-
-FLORENCE2_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
-
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
-
- [What are input IDs?](../glossary#input-ids)
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
- The tensors corresponding to the input images. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Florence2Processor`] uses
- [`CLIPImageProcessor`] for processing images).
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
-
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
-
- [What are attention masks?](../glossary#attention-mask)
-
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
-
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
- `past_key_values`).
-
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
- information on the default strategy.
-
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
-
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
-
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
-"""
-
-@add_start_docstrings(
- """The FLORENCE2 vision model without any head""",
- FLORENCE2_START_DOCSTRING,
-)
-class Florence2VisionModel(Florence2PreTrainedModel):
- def __init__(self, config: Florence2VisionConfig):
- super().__init__(config)
- assert config.model_type == 'davit', 'only DaViT is supported for now'
- self.vision_tower = DaViT.from_config(config=config)
-
- self.post_init()
-
- def forward(self, pixel_values):
- if len(pixel_values.shape) == 4:
- x = self.vision_tower.forward_features_unpool(pixel_values)
- else:
- raise ValueError(f'invalid image shape {pixel_values.shape}')
- return x
-
-
-@add_start_docstrings(
- """The FLORENCE2 vision model with projection layer""",
- FLORENCE2_START_DOCSTRING,
-)
-class Florence2VisionModelWithProjection(Florence2PreTrainedModel):
- def __init__(self, config: Florence2VisionConfig):
- super().__init__(config)
- assert config.model_type == 'davit', 'only DaViT is supported for now'
- self.vision_tower = DaViT.from_config(config=config)
-
- self._build_image_projection_layers(config)
-
- self.post_init()
-
- def _build_image_projection_layers(self, config):
- image_dim_out = config.dim_embed[-1]
- dim_projection = config.projection_dim
- self.image_projection = nn.Parameter(
- torch.empty(image_dim_out, dim_projection)
- )
- self.image_proj_norm = nn.LayerNorm(dim_projection)
- image_pos_embed_config = config.image_pos_embed
- if image_pos_embed_config['type'] == 'learned_abs_2d':
- self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
- embedding_dim=image_dim_out,
- num_pos=image_pos_embed_config['max_pos_embeddings']
- )
- else:
- raise NotImplementedError('Not implemented yet')
-
- self.image_feature_source = config.image_feature_source
-
- # temporal embedding
- visual_temporal_embedding_config = config.visual_temporal_embedding
- if visual_temporal_embedding_config['type'] == 'COSINE':
- self.visual_temporal_embed = PositionalEmbeddingCosine1D(
- embed_dim=image_dim_out,
- max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
- )
- else:
- raise NotImplementedError('Not implemented yet')
-
- def forward(self, pixel_values):
- if len(pixel_values.shape) == 4:
- batch_size, C, H, W = pixel_values.shape
- T = 1
- x = self.vision_tower.forward_features_unpool(pixel_values)
- else:
- raise ValueError(f'invalid image shape {pixel_values.shape}')
-
- if self.image_pos_embed is not None:
- x = x.view(batch_size * T, -1, x.shape[-1])
- num_tokens = x.shape[-2]
- h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
- assert h * w == num_tokens, 'only support square feature maps for now'
- x = x.view(batch_size * T, h, w, x.shape[-1])
- pos_embed = self.image_pos_embed(x)
- x = x + pos_embed
- x = x.view(batch_size, T * h*w, x.shape[-1])
-
- if self.visual_temporal_embed is not None:
- visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
- x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
-
- x_feat_dict = {}
-
- spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
- x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
-
- temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
- x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
-
- x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
- x_feat_dict['last_frame'] = x
-
- new_x = []
- for _image_feature_source in self.image_feature_source:
- if _image_feature_source not in x_feat_dict:
- raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
- new_x.append(x_feat_dict[_image_feature_source])
-
- x = torch.cat(new_x, dim=1)
-
- x = x @ self.image_projection
- x = self.image_proj_norm(x)
-
-
- return x
-
-
-
-@add_start_docstrings(
- """The FLORENCE2 model which consists of a vision backbone and a language model.""",
- FLORENCE2_START_DOCSTRING,
-)
-class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
- def __init__(self, config: Florence2Config):
- super().__init__(config)
- assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
- self.vision_tower = DaViT.from_config(config=config.vision_config)
- # remove unused layers
- del self.vision_tower.head
- del self.vision_tower.norms
-
- self.vocab_size = config.vocab_size
- self._attn_implementation = config._attn_implementation
- self._build_image_projection_layers(config)
-
- language_model = Florence2LanguageForConditionalGeneration(config=config.text_config)
-
- if language_model._tied_weights_keys is not None:
- self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
- self.language_model = language_model
-
- self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
- self.post_init()
-
- def _build_image_projection_layers(self, config):
- image_dim_out = config.vision_config.dim_embed[-1]
- dim_projection = config.vision_config.projection_dim
- self.image_projection = nn.Parameter(
- torch.empty(image_dim_out, dim_projection)
- )
- self.image_proj_norm = nn.LayerNorm(dim_projection)
- image_pos_embed_config = config.vision_config.image_pos_embed
- if image_pos_embed_config['type'] == 'learned_abs_2d':
- self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
- embedding_dim=image_dim_out,
- num_pos=image_pos_embed_config['max_pos_embeddings']
- )
- else:
- raise NotImplementedError('Not implemented yet')
-
- self.image_feature_source = config.vision_config.image_feature_source
-
- # temporal embedding
- visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
- if visual_temporal_embedding_config['type'] == 'COSINE':
- self.visual_temporal_embed = PositionalEmbeddingCosine1D(
- embed_dim=image_dim_out,
- max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
- )
- else:
- raise NotImplementedError('Not implemented yet')
-
- def get_encoder(self):
- return self.language_model.get_encoder()
-
- def get_decoder(self):
- return self.language_model.get_decoder()
-
- def get_input_embeddings(self):
- return self.language_model.get_input_embeddings()
-
- def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
- model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
- # update vocab size
- self.config.text_config.vocab_size = model_embeds.num_embeddings
- self.config.vocab_size = model_embeds.num_embeddings
- self.vocab_size = model_embeds.num_embeddings
- return model_embeds
-
- def _encode_image(self, pixel_values):
- if len(pixel_values.shape) == 4:
- batch_size, C, H, W = pixel_values.shape
- T = 1
- x = self.vision_tower.forward_features_unpool(pixel_values)
- else:
- raise ValueError(f'invalid image shape {pixel_values.shape}')
-
- if self.image_pos_embed is not None:
- x = x.view(batch_size * T, -1, x.shape[-1])
- num_tokens = x.shape[-2]
- h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
- assert h * w == num_tokens, 'only support square feature maps for now'
- x = x.view(batch_size * T, h, w, x.shape[-1])
- pos_embed = self.image_pos_embed(x)
- x = x + pos_embed
- x = x.view(batch_size, T * h*w, x.shape[-1])
-
- if self.visual_temporal_embed is not None:
- visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
- x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
-
- x_feat_dict = {}
-
- spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
- x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
-
- temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
- x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
-
- x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
- x_feat_dict['last_frame'] = x
-
- new_x = []
- for _image_feature_source in self.image_feature_source:
- if _image_feature_source not in x_feat_dict:
- raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
- new_x.append(x_feat_dict[_image_feature_source])
-
- x = torch.cat(new_x, dim=1)
-
- x = x @ self.image_projection
- x = self.image_proj_norm(x)
-
- return x
-
- def _merge_input_ids_with_image_features(
- self, image_features, inputs_embeds
- ):
- batch_size, image_token_length = image_features.size()[:-1]
- device = image_features.device
- image_attention_mask = torch.ones(batch_size, image_token_length, device=device)
-
- # task_prefix_embeds: [batch_size, padded_context_length, hidden_size]
- # task_prefix_attention_mask: [batch_size, context_length]
- if inputs_embeds is None:
- return image_features, image_attention_mask
-
- task_prefix_embeds = inputs_embeds
- task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)
-
- if len(task_prefix_attention_mask.shape) == 3:
- task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
-
- # concat [image embeds, task prefix embeds]
- inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
- attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)
-
- return inputs_embeds, attention_mask
-
-
- @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Florence2Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- pixel_values: torch.FloatTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Florence2Seq2SeqLMOutput]:
- r"""
- Args:
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
-
- Returns:
-
- Example:
-
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration
-
- >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large")
- >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
-
- >>> prompt = "
"
- >>> url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
-
- >>> inputs = processor(text=prompt, images=image, return_tensors="pt")
-
- >>> # Generate
- >>> generate_ids = model.generate(**inputs, max_length=100)
- >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "A green car parked in front of a yellow building."
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- image_features = None
- if inputs_embeds is None:
- # 1. Extra the input embeddings
- if input_ids is not None:
- inputs_embeds = self.get_input_embeddings()(input_ids)
- # 2. Merge text and images
- if pixel_values is not None:
- # (batch_size, num_image_tokens, hidden_size)
- image_features = self._encode_image(pixel_values)
- inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
-
- if inputs_embeds is not None:
- attention_mask = attention_mask.to(inputs_embeds.dtype)
-
- outputs = self.language_model(
- attention_mask=attention_mask,
- labels=labels,
- inputs_embeds=inputs_embeds,
- decoder_input_ids=decoder_input_ids,
- encoder_outputs=encoder_outputs,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- #logits = outputs.logits
- #logits = logits.float()
- #loss = outputs.loss
- #if not return_dict:
- # output = (logits,) + outputs[1:]
- # return (loss,) + output if loss is not None else output
-
- return Florence2Seq2SeqLMOutput(
- #loss=loss,
- #logits=logits,
- #past_key_values=outputs.past_key_values,
- #decoder_hidden_states=outputs.decoder_hidden_states,
- #decoder_attentions=outputs.decoder_attentions,
- #cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- image_hidden_states=image_features
- )
-
- def generate(
- self,
- input_ids,
- inputs_embeds=None,
- pixel_values=None,
- **kwargs
- ):
-
- if inputs_embeds is None:
- # 1. Extra the input embeddings
- if input_ids is not None:
- inputs_embeds = self.get_input_embeddings()(input_ids)
- # 2. Merge text and images
- if pixel_values is not None:
- image_features = self._encode_image(pixel_values)
- inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
-
- return self.language_model.generate(
- input_ids=None,
- inputs_embeds=inputs_embeds,
- **kwargs
- )
-
- def prepare_inputs_for_generation(
- self,
- decoder_input_ids,
- past_key_values=None,
- attention_mask=None,
- pixel_values=None,
- decoder_attention_mask=None,
- head_mask=None,
- decoder_head_mask=None,
- cross_attn_head_mask=None,
- use_cache=None,
- encoder_outputs=None,
- **kwargs,
- ):
- # cut decoder_input_ids if past_key_values is used
- if past_key_values is not None:
- past_length = past_key_values[0][0].shape[2]
-
- # Some generation methods already pass only the last input ID
- if decoder_input_ids.shape[1] > past_length:
- remove_prefix_length = past_length
- else:
- # Default to old behavior: keep only final ID
- remove_prefix_length = decoder_input_ids.shape[1] - 1
-
- decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
-
- return {
- "input_ids": None, # encoder_outputs is defined. input_ids not needed
- "encoder_outputs": encoder_outputs,
- "past_key_values": past_key_values,
- "decoder_input_ids": decoder_input_ids,
- "attention_mask": attention_mask,
- "pixel_values": pixel_values,
- "decoder_attention_mask": decoder_attention_mask,
- "head_mask": head_mask,
- "decoder_head_mask": decoder_head_mask,
- "cross_attn_head_mask": cross_attn_head_mask,
- "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
- }
-
- def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
- return self.language_model.shift_tokens_right(labels)
-
- def _reorder_cache(self, *args, **kwargs):
- return self.language_model._reorder_cache(*args, **kwargs)
-
-
-@add_start_docstrings(
- """The FLORENCE2 model which consists of a vision backbone and a language model (encoder-only).""",
- FLORENCE2_START_DOCSTRING,
-)
-class Florence2VisionLanguageModel(Florence2PreTrainedModel):
- def __init__(self, config: Florence2Config):
- super().__init__(config)
-
- assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
- self.vision_tower = DaViT.from_config(config=config.vision_config)
- # remove unused layers
- del self.vision_tower.head
- del self.vision_tower.norms
-
- self.vocab_size = config.vocab_size
- self._attn_implementation = config._attn_implementation
- self._build_image_projection_layers(config)
-
- padding_idx, vocab_size = config.pad_token_id, config.vocab_size
- self.language_model = Florence2Encoder(config.text_config)
-
- self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
- self.post_init()
-
- def _build_image_projection_layers(self, config):
- image_dim_out = config.vision_config.dim_embed[-1]
- dim_projection = config.vision_config.projection_dim
- self.image_projection = nn.Parameter(
- torch.empty(image_dim_out, dim_projection)
- )
- self.image_proj_norm = nn.LayerNorm(dim_projection)
- image_pos_embed_config = config.vision_config.image_pos_embed
- if image_pos_embed_config['type'] == 'learned_abs_2d':
- self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
- embedding_dim=image_dim_out,
- num_pos=image_pos_embed_config['max_pos_embeddings']
- )
- else:
- raise NotImplementedError('Not implemented yet')
-
- self.image_feature_source = config.vision_config.image_feature_source
-
- # temporal embedding
- visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
- if visual_temporal_embedding_config['type'] == 'COSINE':
- self.visual_temporal_embed = PositionalEmbeddingCosine1D(
- embed_dim=image_dim_out,
- max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
- )
- else:
- raise NotImplementedError('Not implemented yet')
-
- def get_encoder(self):
- return self.language_model
-
- def get_input_embeddings(self):
- return self.language_model.embed_tokens
-
- def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
- model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
- # update vocab size
- self.config.text_config.vocab_size = model_embeds.num_embeddings
- self.config.vocab_size = model_embeds.num_embeddings
- self.vocab_size = model_embeds.num_embeddings
- return model_embeds
-
- def _encode_image(self, pixel_values):
- if len(pixel_values.shape) == 4:
- batch_size, C, H, W = pixel_values.shape
- T = 1
- x = self.vision_tower.forward_features_unpool(pixel_values)
- else:
- raise ValueError(f'invalid image shape {pixel_values.shape}')
-
- if self.image_pos_embed is not None:
- x = x.view(batch_size * T, -1, x.shape[-1])
- num_tokens = x.shape[-2]
- h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
- assert h * w == num_tokens, 'only support square feature maps for now'
- x = x.view(batch_size * T, h, w, x.shape[-1])
- pos_embed = self.image_pos_embed(x)
- x = x + pos_embed
- x = x.view(batch_size, T * h*w, x.shape[-1])
-
- if self.visual_temporal_embed is not None:
- visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
- x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
-
- x_feat_dict = {}
-
- spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
- x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
-
- temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
- x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
-
- x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
- x_feat_dict['last_frame'] = x
-
- new_x = []
- for _image_feature_source in self.image_feature_source:
- if _image_feature_source not in x_feat_dict:
- raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
- new_x.append(x_feat_dict[_image_feature_source])
-
- x = torch.cat(new_x, dim=1)
-
- x = x @ self.image_projection
- x = self.image_proj_norm(x)
-
- return x
-
- def _merge_input_ids_with_image_features(
- self, image_features, inputs_embeds
- ):
- batch_size, image_token_length = image_features.size()[:-1]
- device = image_features.device
- image_attention_mask = torch.ones(batch_size, image_token_length, device=device)
-
- # task_prefix_embeds: [batch_size, padded_context_length, hidden_size]
- # task_prefix_attention_mask: [batch_size, context_length]
- if inputs_embeds is None:
- return image_features, image_attention_mask
-
- task_prefix_embeds = inputs_embeds
- task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)
-
- if len(task_prefix_attention_mask.shape) == 3:
- task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
-
- # concat [image embeds, task prefix embeds]
- inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
- attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)
-
- return inputs_embeds, attention_mask
-
-
- @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Florence2VisionLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- pixel_values: torch.FloatTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- #decoder_input_ids: Optional[torch.LongTensor] = None,
- #decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- #decoder_head_mask: Optional[torch.Tensor] = None,
- #cross_attn_head_mask: Optional[torch.Tensor] = None,
- #encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- #past_key_values: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- #decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- #use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Florence2VisionLMOutput]:
- r"""
- Args:
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
- Returns:
- Example:
- ```python
- >>> from PIL import Image
- >>> import requests
- >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration
- >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large")
- >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
- >>> prompt = ""
- >>> url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> inputs = processor(text=prompt, images=image, return_tensors="pt")
- >>> # Generate
- >>> generate_ids = model.generate(**inputs, max_length=100)
- >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
- "A green car parked in front of a yellow building."
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- image_features = None
- if inputs_embeds is None:
- # 1. Extra the input embeddings
- if input_ids is not None:
- inputs_embeds = self.get_input_embeddings()(input_ids)
- # 2. Merge text and images
- if pixel_values is not None:
- # (batch_size, num_image_tokens, hidden_size)
- image_features = self._encode_image(pixel_values)
- inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
-
- if inputs_embeds is not None:
- attention_mask = attention_mask.to(inputs_embeds.dtype)
- outputs = self.language_model(
- #input_ids=input_ids,
- attention_mask=attention_mask,
- #labels=labels,
- inputs_embeds=inputs_embeds,
- #decoder_input_ids=decoder_input_ids,
- #encoder_outputs=encoder_outputs,
- #decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- #decoder_head_mask=decoder_head_mask,
- #cross_attn_head_mask=cross_attn_head_mask,
- #past_key_values=past_key_values,
- #decoder_inputs_embeds=decoder_inputs_embeds,
- #use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- if not return_dict:
- return outputs.last_hidden_state
-
- return Florence2VisionLMOutput(
- encoder_last_hidden_state=outputs.last_hidden_state,
- encoder_hidden_states=outputs.hidden_states,
- encoder_attentions=outputs.attentions,
- image_hidden_states=image_features
- )
-
- #def _reorder_cache(self, *args, **kwargs):
+# coding=utf-8
+# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+""" PyTorch Florence-2 model."""
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import math
+import torch
+import torch.utils.checkpoint
+from torch import nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from torch.nn import CrossEntropyLoss
+from collections import OrderedDict
+from einops import rearrange
+from timm.models.layers import DropPath, trunc_normal_
+
+from transformers.modeling_utils import PreTrainedModel
+from transformers.utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_flash_attn_2_available,
+ logging,
+ replace_return_docstrings,
+ is_flash_attn_2_available,
+ is_flash_attn_greater_or_equal_2_10,
+)
+from configuration_florence2 import Florence2Config
+from configuration_florence2 import Florence2LanguageConfig
+from configuration_florence2 import Florence2VisionConfig
+
+
+from transformers.activations import ACT2FN
+from transformers.modeling_attn_mask_utils import (
+ _prepare_4d_attention_mask,
+ _prepare_4d_attention_mask_for_sdpa,
+ _prepare_4d_causal_attention_mask,
+ _prepare_4d_causal_attention_mask_for_sdpa,
+)
+from transformers.modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+)
+
+
+if is_flash_attn_2_available():
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "Florence2Config"
+
+class LearnedAbsolutePositionEmbedding2D(nn.Module):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, embedding_dim=256, num_pos=50):
+ super().__init__()
+ self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
+ self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2))
+
+ def forward(self, pixel_values):
+ """
+ pixel_values: (batch_size, height, width, num_channels)
+ returns: (batch_size, height, width, embedding_dim * 2)
+ """
+ if len(pixel_values.shape) != 4:
+ raise ValueError('pixel_values must be a 4D tensor')
+ height, width = pixel_values.shape[1:3]
+ width_values = torch.arange(width, device=pixel_values.device)
+ height_values = torch.arange(height, device=pixel_values.device)
+ x_emb = self.column_embeddings(width_values)
+ y_emb = self.row_embeddings(height_values)
+ # (height, width, embedding_dim * 2)
+ pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
+ # (embedding_dim * 2, height, width)
+ pos = pos.permute(2, 0, 1)
+ pos = pos.unsqueeze(0)
+ # (batch_size, embedding_dim * 2, height, width)
+ pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
+ # (batch_size, height, width, embedding_dim * 2)
+ pos = pos.permute(0, 2, 3, 1)
+ return pos
+
+class PositionalEmbeddingCosine1D(nn.Module):
+ """
+ This class implements a very simple positional encoding. It follows closely
+ the encoder from the link below:
+ https://pytorch.org/tutorials/beginner/translation_transformer.html
+
+ Args:
+ embed_dim: The dimension of the embeddings.
+ dropout_prob: The dropout probability.
+ max_seq_len: The maximum length to precompute the positional encodings.
+ """
+ def __init__(
+ self,
+ embed_dim: int = 512,
+ max_seq_len: int = 1024) -> None:
+ super(PositionalEmbeddingCosine1D, self).__init__()
+ self.embed_dim = embed_dim
+ self.max_seq_len = max_seq_len
+ # Generate the sinusoidal arrays.
+ factor = math.log(10000)
+ denominator = torch.exp(
+ -factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim)
+ # Matrix where rows correspond to a positional embedding as a function
+ # of the position index (i.e., the row index).
+ frequencies = \
+ torch.arange(0, self.max_seq_len) \
+ .reshape(self.max_seq_len, 1) * denominator
+ pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
+ # Populate uneven entries.
+ pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
+ pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
+ # Save the positional embeddings in a constant buffer.
+ self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
+
+ def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
+ """
+ Args:
+ seq_embeds: The sequence embeddings in order. Allowed size:
+ 1. [T, D], where T is the length of the sequence, and D is the
+ frame embedding dimension.
+ 2. [B, T, D], where B is the batch size and T and D are the
+ same as above.
+
+ Returns a tensor of with the same dimensions as the input: i.e.,
+ [1, T, D] or [T, D].
+ """
+ shape_len = len(seq_embeds.shape)
+ assert 2 <= shape_len <= 3
+ len_seq = seq_embeds.size(-2)
+ assert len_seq <= self.max_seq_len
+ pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
+ # Adapt pre-computed positional embeddings to the input.
+ if shape_len == 3:
+ pos_embeds = pos_embeds.view(
+ (1, pos_embeds.size(0), pos_embeds.size(1)))
+ return pos_embeds
+
+
+class LearnedAbsolutePositionEmbedding1D(nn.Module):
+ """
+ Learnable absolute positional embeddings for 1D sequences.
+
+ Args:
+ embed_dim: The dimension of the embeddings.
+ max_seq_len: The maximum length to precompute the positional encodings.
+ """
+ def __init__(
+ self,
+ embedding_dim: int = 512,
+ num_pos: int = 1024) -> None:
+ super(LearnedAbsolutePositionEmbedding1D, self).__init__()
+ self.embeddings = nn.Embedding(num_pos, embedding_dim)
+ self.num_pos = num_pos
+
+ def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
+ """
+ Args:
+ seq_embeds: The sequence embeddings in order. Allowed size:
+ 1. [T, D], where T is the length of the sequence, and D is the
+ frame embedding dimension.
+ 2. [B, T, D], where B is the batch size and T and D are the
+ same as above.
+
+ Returns a tensor of with the same dimensions as the input: i.e.,
+ [1, T, D] or [T, D].
+ """
+ shape_len = len(seq_embeds.shape)
+ assert 2 <= shape_len <= 3
+ len_seq = seq_embeds.size(-2)
+ assert len_seq <= self.num_pos
+ # [T, D]
+ pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
+ # Adapt pre-computed positional embeddings to the input.
+ if shape_len == 3:
+ pos_embeds = pos_embeds.view(
+ (1, pos_embeds.size(0), pos_embeds.size(1)))
+ return pos_embeds
+
+
+
+class MySequential(nn.Sequential):
+ def forward(self, *inputs):
+ for module in self._modules.values():
+ if type(inputs) == tuple:
+ inputs = module(*inputs)
+ else:
+ inputs = module(inputs)
+ return inputs
+
+
+class PreNorm(nn.Module):
+ def __init__(self, norm, fn, drop_path=None):
+ super().__init__()
+ self.norm = norm
+ self.fn = fn
+ self.drop_path = drop_path
+
+ def forward(self, x, *args, **kwargs):
+ shortcut = x
+ if self.norm != None:
+ x, size = self.fn(self.norm(x), *args, **kwargs)
+ else:
+ x, size = self.fn(x, *args, **kwargs)
+
+ if self.drop_path:
+ x = self.drop_path(x)
+
+ x = shortcut + x
+
+ return x, size
+
+
+class Mlp(nn.Module):
+ def __init__(
+ self,
+ in_features,
+ hidden_features=None,
+ out_features=None,
+ act_layer=nn.GELU,
+ ):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.net = nn.Sequential(OrderedDict([
+ ("fc1", nn.Linear(in_features, hidden_features)),
+ ("act", act_layer()),
+ ("fc2", nn.Linear(hidden_features, out_features))
+ ]))
+
+ def forward(self, x, size):
+ return self.net(x), size
+
+
+class DepthWiseConv2d(nn.Module):
+ def __init__(
+ self,
+ dim_in,
+ kernel_size,
+ padding,
+ stride,
+ bias=True,
+ ):
+ super().__init__()
+ self.dw = nn.Conv2d(
+ dim_in, dim_in,
+ kernel_size=kernel_size,
+ padding=padding,
+ groups=dim_in,
+ stride=stride,
+ bias=bias
+ )
+
+ def forward(self, x, size):
+ B, N, C = x.shape
+ H, W = size
+ assert N == H * W
+
+ x = self.dw(x.transpose(1, 2).view(B, C, H, W))
+ size = (x.size(-2), x.size(-1))
+ x = x.flatten(2).transpose(1, 2)
+ return x, size
+
+
+class ConvEmbed(nn.Module):
+ """ Image to Patch Embedding
+ """
+
+ def __init__(
+ self,
+ patch_size=7,
+ in_chans=3,
+ embed_dim=64,
+ stride=4,
+ padding=2,
+ norm_layer=None,
+ pre_norm=True
+ ):
+ super().__init__()
+ self.patch_size = patch_size
+
+ self.proj = nn.Conv2d(
+ in_chans, embed_dim,
+ kernel_size=patch_size,
+ stride=stride,
+ padding=padding
+ )
+
+ dim_norm = in_chans if pre_norm else embed_dim
+ self.norm = norm_layer(dim_norm) if norm_layer else None
+
+ self.pre_norm = pre_norm
+
+ def forward(self, x, size):
+ H, W = size
+ if len(x.size()) == 3:
+ if self.norm and self.pre_norm:
+ x = self.norm(x)
+ x = rearrange(
+ x, 'b (h w) c -> b c h w',
+ h=H, w=W
+ )
+
+ x = self.proj(x)
+
+ _, _, H, W = x.shape
+ x = rearrange(x, 'b c h w -> b (h w) c')
+ if self.norm and not self.pre_norm:
+ x = self.norm(x)
+
+ return x, (H, W)
+
+
+class ChannelAttention(nn.Module):
+
+ def __init__(self, dim, groups=8, qkv_bias=True):
+ super().__init__()
+
+ self.groups = groups
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.proj = nn.Linear(dim, dim)
+
+ def forward(self, x, size):
+ B, N, C = x.shape
+
+ qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
+ q, k, v = qkv[0], qkv[1], qkv[2]
+
+ q = q * (float(N) ** -0.5)
+ attention = q.transpose(-1, -2) @ k
+ attention = attention.softmax(dim=-1)
+ x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
+ x = x.transpose(1, 2).reshape(B, N, C)
+ x = self.proj(x)
+ return x, size
+
+
+class ChannelBlock(nn.Module):
+
+ def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
+ drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
+ conv_at_attn=True, conv_at_ffn=True):
+ super().__init__()
+
+ drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
+
+ self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
+ self.channel_attn = PreNorm(
+ norm_layer(dim),
+ ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
+ drop_path
+ )
+ self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
+ self.ffn = PreNorm(
+ norm_layer(dim),
+ Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
+ drop_path
+ )
+
+ def forward(self, x, size):
+ if self.conv1:
+ x, size = self.conv1(x, size)
+ x, size = self.channel_attn(x, size)
+
+ if self.conv2:
+ x, size = self.conv2(x, size)
+ x, size = self.ffn(x, size)
+
+ return x, size
+
+
+def window_partition(x, window_size: int):
+ B, H, W, C = x.shape
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+ return windows
+
+
+def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
+ B = batch_size
+ # this will cause onnx conversion failed for dynamic axis, because treated as constant
+ # int(windows.shape[0] / (H * W / window_size / window_size))
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+ return x
+
+
+class WindowAttention(nn.Module):
+ def __init__(self, dim, num_heads, window_size, qkv_bias=True):
+
+ super().__init__()
+ self.dim = dim
+ self.window_size = window_size
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = float(head_dim) ** -0.5
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.proj = nn.Linear(dim, dim)
+
+ self.softmax = nn.Softmax(dim=-1)
+
+ def forward(self, x, size):
+
+ H, W = size
+ B, L, C = x.shape
+ assert L == H * W, "input feature has wrong size"
+
+ x = x.view(B, H, W, C)
+
+ pad_l = pad_t = 0
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
+ _, Hp, Wp, _ = x.shape
+
+ x = window_partition(x, self.window_size)
+ x = x.view(-1, self.window_size * self.window_size, C)
+
+ # W-MSA/SW-MSA
+ # attn_windows = self.attn(x_windows)
+
+ B_, N, C = x.shape
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
+ q, k, v = qkv[0], qkv[1], qkv[2]
+
+ q = q * self.scale
+ attn = (q @ k.transpose(-2, -1))
+ attn = self.softmax(attn)
+
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+ x = self.proj(x)
+
+ # merge windows
+ x = x.view(
+ -1, self.window_size, self.window_size, C
+ )
+ x = window_reverse(x, B, self.window_size, Hp, Wp)
+
+ if pad_r > 0 or pad_b > 0:
+ x = x[:, :H, :W, :].contiguous()
+
+ x = x.view(B, H * W, C)
+
+ return x, size
+
+
+class SpatialBlock(nn.Module):
+
+ def __init__(self, dim, num_heads, window_size,
+ mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
+ norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
+ super().__init__()
+
+ drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
+
+ self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
+ self.window_attn = PreNorm(
+ norm_layer(dim),
+ WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
+ drop_path
+ )
+ self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
+ self.ffn = PreNorm(
+ norm_layer(dim),
+ Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
+ drop_path
+ )
+
+ def forward(self, x, size):
+ if self.conv1:
+ x, size = self.conv1(x, size)
+ x, size = self.window_attn(x, size)
+
+ if self.conv2:
+ x, size = self.conv2(x, size)
+ x, size = self.ffn(x, size)
+ return x, size
+
+
+class DaViT(nn.Module):
+ """ DaViT: Dual-Attention Transformer
+
+ Args:
+ in_chans (int): Number of input image channels. Default: 3.
+ num_classes (int): Number of classes for classification head. Default: 1000.
+ patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
+ patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
+ patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
+ patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
+ embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
+ num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
+ num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
+ window_size (int): Window size. Default: 7.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1.
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+ enable_checkpoint (bool): If True, enable checkpointing. Default: False.
+ conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
+ conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
+ """
+
+ def __init__(
+ self,
+ in_chans=3,
+ num_classes=1000,
+ depths=(1, 1, 3, 1),
+ patch_size=(7, 2, 2, 2),
+ patch_stride=(4, 2, 2, 2),
+ patch_padding=(3, 0, 0, 0),
+ patch_prenorm=(False, False, False, False),
+ embed_dims=(64, 128, 192, 256),
+ num_heads=(3, 6, 12, 24),
+ num_groups=(3, 6, 12, 24),
+ window_size=7,
+ mlp_ratio=4.,
+ qkv_bias=True,
+ drop_path_rate=0.1,
+ norm_layer=nn.LayerNorm,
+ enable_checkpoint=False,
+ conv_at_attn=True,
+ conv_at_ffn=True,
+ ):
+ super().__init__()
+
+ self.num_classes = num_classes
+ self.embed_dims = embed_dims
+ self.num_heads = num_heads
+ self.num_groups = num_groups
+ self.num_stages = len(self.embed_dims)
+ self.enable_checkpoint = enable_checkpoint
+ assert self.num_stages == len(self.num_heads) == len(self.num_groups)
+
+ num_stages = len(embed_dims)
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]
+
+ depth_offset = 0
+ convs = []
+ blocks = []
+ for i in range(num_stages):
+ conv_embed = ConvEmbed(
+ patch_size=patch_size[i],
+ stride=patch_stride[i],
+ padding=patch_padding[i],
+ in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
+ embed_dim=self.embed_dims[i],
+ norm_layer=norm_layer,
+ pre_norm=patch_prenorm[i]
+ )
+ convs.append(conv_embed)
+
+ block = MySequential(
+ *[
+ MySequential(OrderedDict([
+ (
+ 'spatial_block', SpatialBlock(
+ embed_dims[i],
+ num_heads[i],
+ window_size,
+ drop_path_rate=dpr[depth_offset+j*2],
+ qkv_bias=qkv_bias,
+ mlp_ratio=mlp_ratio,
+ conv_at_attn=conv_at_attn,
+ conv_at_ffn=conv_at_ffn,
+ )
+ ),
+ (
+ 'channel_block', ChannelBlock(
+ embed_dims[i],
+ num_groups[i],
+ drop_path_rate=dpr[depth_offset+j*2+1],
+ qkv_bias=qkv_bias,
+ mlp_ratio=mlp_ratio,
+ conv_at_attn=conv_at_attn,
+ conv_at_ffn=conv_at_ffn,
+ )
+ )
+ ])) for j in range(depths[i])
+ ]
+ )
+ blocks.append(block)
+ depth_offset += depths[i]*2
+
+ self.convs = nn.ModuleList(convs)
+ self.blocks = nn.ModuleList(blocks)
+
+ self.norms = norm_layer(self.embed_dims[-1])
+ self.avgpool = nn.AdaptiveAvgPool1d(1)
+ self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
+
+ self.apply(self._init_weights)
+
+ @property
+ def dim_out(self):
+ return self.embed_dims[-1]
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.Conv2d):
+ nn.init.normal_(m.weight, std=0.02)
+ for name, _ in m.named_parameters():
+ if name in ['bias']:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.weight, 1.0)
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.BatchNorm2d):
+ nn.init.constant_(m.weight, 1.0)
+ nn.init.constant_(m.bias, 0)
+
+ def forward_features_unpool(self, x):
+ """
+ forward until avg pooling
+ Args:
+ x (_type_): input image tensor
+ """
+ input_size = (x.size(2), x.size(3))
+ for conv, block in zip(self.convs, self.blocks):
+ x, input_size = conv(x, input_size)
+ if self.enable_checkpoint:
+ x, input_size = checkpoint.checkpoint(block, x, input_size)
+ else:
+ x, input_size = block(x, input_size)
+ return x
+
+ def forward_features(self, x):
+ x = self.forward_features_unpool(x)
+
+ # (batch_size, num_tokens, token_dim)
+ x = self.avgpool(x.transpose(1, 2))
+ # (batch_size, 1, num_tokens)
+ x = torch.flatten(x, 1)
+ x = self.norms(x)
+
+ return x
+
+ def forward(self, x):
+ x = self.forward_features(x)
+ x = self.head(x)
+ return x
+
+ @classmethod
+ def from_config(cls, config):
+ return cls(
+ depths=config.depths,
+ embed_dims=config.dim_embed,
+ num_heads=config.num_heads,
+ num_groups=config.num_groups,
+ patch_size=config.patch_size,
+ patch_stride=config.patch_stride,
+ patch_padding=config.patch_padding,
+ patch_prenorm=config.patch_prenorm,
+ drop_path_rate=config.drop_path_rate,
+ window_size=config.window_size,
+ )
+
+
+
+
+if is_flash_attn_2_available():
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
+
+# Copied from transformers.models.llama.modeling_llama._get_unpad_data
+def _get_unpad_data(attention_mask):
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+ shifted_input_ids[:, 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+class Florence2LearnedPositionalEmbedding(nn.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int):
+ # Florence2 is set up so that if padding_idx is specified then offset the embedding ids by 2
+ # and adjust num_embeddings appropriately. Other models don't have this hack
+ self.offset = 2
+ super().__init__(num_embeddings + self.offset, embedding_dim)
+
+ def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
+ """`input_ids' shape is expected to be [bsz x seqlen]."""
+
+ bsz, seq_len = input_ids.shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ ).expand(bsz, -1)
+
+ return super().forward(positions + self.offset)
+
+
+class Florence2ScaledWordEmbedding(nn.Embedding):
+ """
+ This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
+ super().__init__(num_embeddings, embedding_dim, padding_idx)
+ self.embed_scale = embed_scale
+
+ def forward(self, input_ids: torch.Tensor):
+ return super().forward(input_ids) * self.embed_scale
+
+
+class Florence2Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ is_causal: bool = False,
+ config: Optional[Florence2LanguageConfig] = None,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ self.config = config
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+ self.is_causal = is_causal
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.reshape(*proj_shape)
+ value_states = value_states.reshape(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+class Florence2FlashAttention2(Florence2Attention):
+ """
+ Florence2 flash attention module. This module inherits from `Florence2Attention` as the weights of the module stays
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
+ flash attention and deal with padding tokens in case the input contains any of them.
+ """
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
+
+ def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ # Florence2FlashAttention2 attention does not support output_attentions
+ if output_attentions:
+ raise ValueError("Florence2FlashAttention2 attention does not support output_attentions")
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, q_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0].transpose(1, 2)
+ value_states = past_key_value[1].transpose(1, 2)
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
+ value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
+ else:
+ # self_attention
+ key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
+
+ kv_seq_len = key_states.shape[-2]
+ if past_key_value is not None:
+ kv_seq_len += past_key_value[0].shape[-2]
+
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
+ # cast them back in the correct dtype just to be sure everything works as expected.
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
+ # in fp32. (LlamaRMSNorm handles it correctly)
+
+ input_dtype = query_states.dtype
+ if input_dtype == torch.float32:
+ if torch.is_autocast_enabled():
+ target_dtype = torch.get_autocast_gpu_dtype()
+ # Handle the case where the model is quantized
+ elif hasattr(self.config, "_pre_quantization_dtype"):
+ target_dtype = self.config._pre_quantization_dtype
+ else:
+ target_dtype = self.q_proj.weight.dtype
+
+ logger.warning_once(
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
+ f" {target_dtype}."
+ )
+
+ query_states = query_states.to(target_dtype)
+ key_states = key_states.to(target_dtype)
+ value_states = value_states.to(target_dtype)
+
+ attn_output = self._flash_attention_forward(
+ query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
+ )
+
+ attn_output = attn_output.reshape(bsz, q_len, -1)
+ attn_output = self.out_proj(attn_output)
+
+ if not output_attentions:
+ attn_weights = None
+
+ return attn_output, attn_weights, past_key_value
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
+ def _flash_attention_forward(
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
+ ):
+ """
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
+ first unpad the input, then computes the attention scores and pad the final attention scores.
+
+ Args:
+ query_states (`torch.Tensor`):
+ Input query states to be passed to Flash Attention API
+ key_states (`torch.Tensor`):
+ Input key states to be passed to Flash Attention API
+ value_states (`torch.Tensor`):
+ Input value states to be passed to Flash Attention API
+ attention_mask (`torch.Tensor`):
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
+ position of padding tokens and 1 for the position of non-padding tokens.
+ dropout (`float`):
+ Attention dropout
+ softmax_scale (`float`, *optional*):
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
+ """
+ if not self._flash_attn_uses_top_left_mask:
+ causal = self.is_causal
+ else:
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
+ causal = self.is_causal and query_length != 1
+
+ # Contains at least one padding token in the sequence
+ if attention_mask is not None:
+ batch_size = query_states.shape[0]
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
+ query_states, key_states, value_states, attention_mask, query_length
+ )
+
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
+
+ attn_output_unpad = flash_attn_varlen_func(
+ query_states,
+ key_states,
+ value_states,
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_k=cu_seqlens_k,
+ max_seqlen_q=max_seqlen_in_batch_q,
+ max_seqlen_k=max_seqlen_in_batch_k,
+ dropout_p=dropout,
+ softmax_scale=softmax_scale,
+ causal=causal,
+ )
+
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
+ else:
+ attn_output = flash_attn_func(
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
+ )
+
+ return attn_output
+
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
+
+ key_layer = index_first_axis(
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
+ )
+ value_layer = index_first_axis(
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
+ )
+ if query_length == kv_seq_len:
+ query_layer = index_first_axis(
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
+ )
+ cu_seqlens_q = cu_seqlens_k
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
+ indices_q = indices_k
+ elif query_length == 1:
+ max_seqlen_in_batch_q = 1
+ cu_seqlens_q = torch.arange(
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
+ ) # There is a memcpy here, that is very bad.
+ indices_q = cu_seqlens_q[:-1]
+ query_layer = query_layer.squeeze(1)
+ else:
+ # The -q_len: slice assumes left padding.
+ attention_mask = attention_mask[:, -query_length:]
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
+
+ return (
+ query_layer,
+ key_layer,
+ value_layer,
+ indices_q,
+ (cu_seqlens_q, cu_seqlens_k),
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
+ )
+
+
+class Florence2SdpaAttention(Florence2Attention):
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+ if output_attentions or layer_head_mask is not None:
+ # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
+ logger.warning_once(
+ "Florence2Model is using Florence2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
+ ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+ )
+ return super().forward(
+ hidden_states,
+ key_value_states=key_value_states,
+ past_key_value=past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ query_states = self._shape(query_states, tgt_len, bsz)
+
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
+ # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
+ is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
+
+ # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
+ # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
+ query_states,
+ key_states,
+ value_states,
+ attn_mask=attention_mask,
+ dropout_p=self.dropout if self.training else 0.0,
+ is_causal=is_causal,
+ )
+
+ if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, None, past_key_value
+
+
+FLORENCE2_ATTENTION_CLASSES = {
+ "eager": Florence2Attention,
+ "sdpa": Florence2SdpaAttention,
+ "flash_attention_2": Florence2FlashAttention2,
+}
+
+
+class Florence2EncoderLayer(nn.Module):
+ def __init__(self, config: Florence2LanguageConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ config=config,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: torch.FloatTensor,
+ layer_head_mask: torch.FloatTensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if hidden_states.dtype == torch.float16 and (
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+ ):
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class Florence2DecoderLayer(nn.Module):
+ def __init__(self, config: Florence2LanguageConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ is_causal=True,
+ config=config,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ config=config,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+ size `(decoder_attention_heads,)`.
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+
+class Florence2LanguagePreTrainedModel(PreTrainedModel):
+ config_class = Florence2LanguageConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"]
+ _no_split_modules = [r"Florence2EncoderLayer", r"Florence2DecoderLayer"]
+ _skip_keys_device_placement = "past_key_values"
+ _supports_flash_attn_2 = True
+ _supports_sdpa = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ @property
+ def dummy_inputs(self):
+ pad_token = self.config.pad_token_id
+ input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
+ dummy_inputs = {
+ "attention_mask": input_ids.ne(pad_token),
+ "input_ids": input_ids,
+ }
+ return dummy_inputs
+
+
+class Florence2Encoder(Florence2LanguagePreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`Florence2EncoderLayer`].
+
+ Args:
+ config: Florence2LanguageConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+
+ embed_dim = config.d_model
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
+
+ self.embed_tokens = Florence2ScaledWordEmbedding(
+ config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
+ )
+
+ if embed_tokens is not None:
+ self.embed_tokens.weight = embed_tokens.weight
+
+ self.embed_positions = Florence2LearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ embed_dim,
+ )
+ self.layers = nn.ModuleList([Florence2EncoderLayer(config) for _ in range(config.encoder_layers)])
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
+ self._use_sdpa = config._attn_implementation == "sdpa"
+ self.layernorm_embedding = nn.LayerNorm(embed_dim)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input = input_ids
+ input_ids = input_ids.view(-1, input_ids.shape[-1])
+ elif inputs_embeds is not None:
+ input = inputs_embeds[:, :, -1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ embed_pos = self.embed_positions(input)
+ embed_pos = embed_pos.to(inputs_embeds.device)
+
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.layernorm_embedding(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ if self._use_flash_attention_2:
+ attention_mask = attention_mask if 0 in attention_mask else None
+ elif self._use_sdpa and head_mask is None and not output_attentions:
+ # output_attentions=True & head_mask can not be supported when using SDPA, fall back to
+ # the manual implementation that requires a 4D causal mask in all cases.
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
+ else:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ (head_mask[idx] if head_mask is not None else None),
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class Florence2Decoder(Florence2LanguagePreTrainedModel):
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Florence2DecoderLayer`]
+
+ Args:
+ config: Florence2LanguageConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_target_positions = config.max_position_embeddings
+ embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
+
+ self.embed_tokens = Florence2ScaledWordEmbedding(
+ config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
+ )
+
+ if embed_tokens is not None:
+ self.embed_tokens.weight = embed_tokens.weight
+
+ self.embed_positions = Florence2LearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ )
+ self.layers = nn.ModuleList([Florence2DecoderLayer(config) for _ in range(config.decoder_layers)])
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
+ self._use_sdpa = config._attn_implementation == "sdpa"
+
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input = input_ids
+ input_shape = input.shape
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ input = inputs_embeds[:, :, -1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input)
+
+ if self._use_flash_attention_2:
+ # 2d mask is passed through the layers
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
+ elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
+ # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
+ # the manual implementation that requires a 4D causal mask in all cases.
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
+ attention_mask,
+ input_shape,
+ inputs_embeds,
+ past_key_values_length,
+ )
+ else:
+ # 4d mask is passed through the layers
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ if self._use_flash_attention_2:
+ encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
+ elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
+ # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
+ # the manual implementation that requires a 4D causal mask in all cases.
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
+ encoder_attention_mask,
+ inputs_embeds.dtype,
+ tgt_len=input_shape[-1],
+ )
+ else:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # embed positions
+ positions = self.embed_positions(input, past_key_values_length)
+ positions = positions.to(inputs_embeds.device)
+
+ hidden_states = inputs_embeds + positions
+ hidden_states = self.layernorm_embedding(hidden_states)
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ cross_attn_layer_head_mask=(
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+ ),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class Florence2LanguageModel(Florence2LanguagePreTrainedModel):
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
+
+ def __init__(self, config: Florence2LanguageConfig):
+ super().__init__(config)
+
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
+
+ self.encoder = Florence2Encoder(config, self.shared)
+ self.decoder = Florence2Decoder(config, self.shared)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, value):
+ self.shared = value
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Seq2SeqModelOutput]:
+ # different to other models, Florence2 automatically creates decoder_input_ids from
+ # input_ids if no decoder_input_ids are provided
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ if input_ids is None:
+ raise ValueError(
+ "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
+ "passed, `input_ids` cannot be `None`. Please pass either "
+ "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
+ )
+
+ decoder_input_ids = shift_tokens_right(
+ input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+# decoder_outputs = self.decoder(
+# input_ids=decoder_input_ids,
+# attention_mask=decoder_attention_mask,
+# encoder_hidden_states=encoder_outputs[0],
+# encoder_attention_mask=attention_mask,
+# head_mask=decoder_head_mask,
+# cross_attn_head_mask=cross_attn_head_mask,
+# past_key_values=past_key_values,
+# inputs_embeds=decoder_inputs_embeds,
+# use_cache=use_cache,
+# output_attentions=output_attentions,
+# output_hidden_states=output_hidden_states,
+# return_dict=return_dict,
+# )
+
+ if not return_dict:
+ return encoder_outputs #decoder_outputs + encoder_outputs
+
+ return Seq2SeqModelOutput(
+ #last_hidden_state=decoder_outputs.last_hidden_state,
+ #past_key_values=decoder_outputs.past_key_values,
+ #decoder_hidden_states=decoder_outputs.hidden_states,
+ #decoder_attentions=decoder_outputs.attentions,
+ #cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+class Florence2LanguageForConditionalGeneration(Florence2LanguagePreTrainedModel):
+ base_model_prefix = "model"
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
+ _keys_to_ignore_on_load_missing = ["final_logits_bias"]
+
+ def __init__(self, config: Florence2LanguageConfig):
+ super().__init__(config)
+ self.model = Florence2LanguageModel(config)
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.model.get_encoder()
+
+ def get_decoder(self):
+ return self.model.get_decoder()
+
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ self._resize_final_logits_bias(new_embeddings.weight.shape[0])
+ return new_embeddings
+
+ def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
+ old_num_tokens = self.final_logits_bias.shape[-1]
+ if new_num_tokens <= old_num_tokens:
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
+ else:
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
+ self.register_buffer("final_logits_bias", new_bias)
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Seq2SeqLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ #lm_logits = self.lm_head(outputs[0])
+ #lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
+
+ #masked_lm_loss = None
+ #if labels is not None:
+ # labels = labels.to(lm_logits.device)
+ # loss_fct = CrossEntropyLoss()
+ # masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ #if not return_dict:
+ # output = (lm_logits,) + outputs[1:]
+ # return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ #loss=masked_lm_loss,
+ #logits=lm_logits,
+ #past_key_values=outputs.past_key_values,
+ #decoder_hidden_states=outputs.decoder_hidden_states,
+ #decoder_attentions=outputs.decoder_attentions,
+ #cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ decoder_attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if decoder_input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
+
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
+ return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ + layer_past[2:],
+ )
+ return reordered_past
+
+@dataclass
+class Florence2Seq2SeqLMOutput(ModelOutput):
+ """
+ Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential
+ decoding.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Language modeling loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
+ hidden_size)` is output.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size,
+ num_image_tokens, hidden_size)`.
+
+ image_hidden_states of the model produced by the vision encoder
+ """
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ last_hidden_state: torch.FloatTensor = None
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
+ decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class Florence2VisionLMOutput(ModelOutput):
+ """
+ Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential
+ decoding.
+ Args:
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+ Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+ Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size,
+ num_image_tokens, hidden_size)`.
+ image_hidden_states of the model produced by the vision encoder
+ """
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+FLORENCE2_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`Florence2Config`] or [`Florence2VisionConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+@add_start_docstrings(
+ "The bare Florence-2 Model outputting raw hidden-states without any specific head on top.",
+ FLORENCE2_START_DOCSTRING,
+)
+class Florence2PreTrainedModel(PreTrainedModel):
+ config_class = Florence2Config
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _skip_keys_device_placement = "past_key_values"
+
+ @property
+ def _supports_flash_attn_2(self):
+ """
+ Retrieve language_model's attribute to check whether the model supports
+ Flash Attention 2 or not.
+ """
+ return self.language_model._supports_flash_attn_2
+
+ @property
+ def _supports_sdpa(self):
+ """
+ Retrieve language_model's attribute to check whether the model supports
+ SDPA or not.
+ """
+ return self.language_model._supports_sdpa
+
+
+FLORENCE2_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
+ The tensors corresponding to the input images. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Florence2Processor`] uses
+ [`CLIPImageProcessor`] for processing images).
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
+ information on the default strategy.
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+@add_start_docstrings(
+ """The FLORENCE2 vision model without any head""",
+ FLORENCE2_START_DOCSTRING,
+)
+class Florence2VisionModel(Florence2PreTrainedModel):
+ def __init__(self, config: Florence2VisionConfig):
+ super().__init__(config)
+ assert config.model_type == 'davit', 'only DaViT is supported for now'
+ self.vision_tower = DaViT.from_config(config=config)
+
+ self.post_init()
+
+ def forward(self, pixel_values):
+ if len(pixel_values.shape) == 4:
+ x = self.vision_tower.forward_features_unpool(pixel_values)
+ else:
+ raise ValueError(f'invalid image shape {pixel_values.shape}')
+ return x
+
+
+@add_start_docstrings(
+ """The FLORENCE2 vision model with projection layer""",
+ FLORENCE2_START_DOCSTRING,
+)
+class Florence2VisionModelWithProjection(Florence2PreTrainedModel):
+ def __init__(self, config: Florence2VisionConfig):
+ super().__init__(config)
+ assert config.model_type == 'davit', 'only DaViT is supported for now'
+ self.vision_tower = DaViT.from_config(config=config)
+
+ self._build_image_projection_layers(config)
+
+ self.post_init()
+
+ def _build_image_projection_layers(self, config):
+ image_dim_out = config.dim_embed[-1]
+ dim_projection = config.projection_dim
+ self.image_projection = nn.Parameter(
+ torch.empty(image_dim_out, dim_projection)
+ )
+ self.image_proj_norm = nn.LayerNorm(dim_projection)
+ image_pos_embed_config = config.image_pos_embed
+ if image_pos_embed_config['type'] == 'learned_abs_2d':
+ self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
+ embedding_dim=image_dim_out,
+ num_pos=image_pos_embed_config['max_pos_embeddings']
+ )
+ else:
+ raise NotImplementedError('Not implemented yet')
+
+ self.image_feature_source = config.image_feature_source
+
+ # temporal embedding
+ visual_temporal_embedding_config = config.visual_temporal_embedding
+ if visual_temporal_embedding_config['type'] == 'COSINE':
+ self.visual_temporal_embed = PositionalEmbeddingCosine1D(
+ embed_dim=image_dim_out,
+ max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
+ )
+ else:
+ raise NotImplementedError('Not implemented yet')
+
+ def forward(self, pixel_values):
+ if len(pixel_values.shape) == 4:
+ batch_size, C, H, W = pixel_values.shape
+ T = 1
+ x = self.vision_tower.forward_features_unpool(pixel_values)
+ else:
+ raise ValueError(f'invalid image shape {pixel_values.shape}')
+
+ if self.image_pos_embed is not None:
+ x = x.view(batch_size * T, -1, x.shape[-1])
+ num_tokens = x.shape[-2]
+ h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
+ assert h * w == num_tokens, 'only support square feature maps for now'
+ x = x.view(batch_size * T, h, w, x.shape[-1])
+ pos_embed = self.image_pos_embed(x)
+ x = x + pos_embed
+ x = x.view(batch_size, T * h*w, x.shape[-1])
+
+ if self.visual_temporal_embed is not None:
+ visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
+ x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
+
+ x_feat_dict = {}
+
+ spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
+ x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
+
+ temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
+ x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
+
+ x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
+ x_feat_dict['last_frame'] = x
+
+ new_x = []
+ for _image_feature_source in self.image_feature_source:
+ if _image_feature_source not in x_feat_dict:
+ raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
+ new_x.append(x_feat_dict[_image_feature_source])
+
+ x = torch.cat(new_x, dim=1)
+
+ x = x @ self.image_projection
+ x = self.image_proj_norm(x)
+
+
+ return x
+
+
+
+@add_start_docstrings(
+ """The FLORENCE2 model which consists of a vision backbone and a language model.""",
+ FLORENCE2_START_DOCSTRING,
+)
+class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
+ def __init__(self, config: Florence2Config):
+ super().__init__(config)
+ assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
+ self.vision_tower = DaViT.from_config(config=config.vision_config)
+ # remove unused layers
+ del self.vision_tower.head
+ del self.vision_tower.norms
+
+ self.vocab_size = config.vocab_size
+ self._attn_implementation = config._attn_implementation
+ self._build_image_projection_layers(config)
+
+ language_model = Florence2LanguageForConditionalGeneration(config=config.text_config)
+
+ if language_model._tied_weights_keys is not None:
+ self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
+ self.language_model = language_model
+
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
+ self.post_init()
+
+ def _build_image_projection_layers(self, config):
+ image_dim_out = config.vision_config.dim_embed[-1]
+ dim_projection = config.vision_config.projection_dim
+ self.image_projection = nn.Parameter(
+ torch.empty(image_dim_out, dim_projection)
+ )
+ self.image_proj_norm = nn.LayerNorm(dim_projection)
+ image_pos_embed_config = config.vision_config.image_pos_embed
+ if image_pos_embed_config['type'] == 'learned_abs_2d':
+ self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
+ embedding_dim=image_dim_out,
+ num_pos=image_pos_embed_config['max_pos_embeddings']
+ )
+ else:
+ raise NotImplementedError('Not implemented yet')
+
+ self.image_feature_source = config.vision_config.image_feature_source
+
+ # temporal embedding
+ visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
+ if visual_temporal_embedding_config['type'] == 'COSINE':
+ self.visual_temporal_embed = PositionalEmbeddingCosine1D(
+ embed_dim=image_dim_out,
+ max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
+ )
+ else:
+ raise NotImplementedError('Not implemented yet')
+
+ def get_encoder(self):
+ return self.language_model.get_encoder()
+
+ def get_decoder(self):
+ return self.language_model.get_decoder()
+
+ def get_input_embeddings(self):
+ return self.language_model.get_input_embeddings()
+
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ # update vocab size
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
+ self.config.vocab_size = model_embeds.num_embeddings
+ self.vocab_size = model_embeds.num_embeddings
+ return model_embeds
+
+ def _encode_image(self, pixel_values):
+ if len(pixel_values.shape) == 4:
+ batch_size, C, H, W = pixel_values.shape
+ T = 1
+ x = self.vision_tower.forward_features_unpool(pixel_values)
+ else:
+ raise ValueError(f'invalid image shape {pixel_values.shape}')
+
+ if self.image_pos_embed is not None:
+ x = x.view(batch_size * T, -1, x.shape[-1])
+ num_tokens = x.shape[-2]
+ h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
+ assert h * w == num_tokens, 'only support square feature maps for now'
+ x = x.view(batch_size * T, h, w, x.shape[-1])
+ pos_embed = self.image_pos_embed(x)
+ x = x + pos_embed
+ x = x.view(batch_size, T * h*w, x.shape[-1])
+
+ if self.visual_temporal_embed is not None:
+ visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
+ x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
+
+ x_feat_dict = {}
+
+ spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
+ x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
+
+ temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
+ x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
+
+ x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
+ x_feat_dict['last_frame'] = x
+
+ new_x = []
+ for _image_feature_source in self.image_feature_source:
+ if _image_feature_source not in x_feat_dict:
+ raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
+ new_x.append(x_feat_dict[_image_feature_source])
+
+ x = torch.cat(new_x, dim=1)
+
+ x = x @ self.image_projection
+ x = self.image_proj_norm(x)
+
+ return x
+
+ def _merge_input_ids_with_image_features(
+ self, image_features, inputs_embeds
+ ):
+ batch_size, image_token_length = image_features.size()[:-1]
+ device = image_features.device
+ image_attention_mask = torch.ones(batch_size, image_token_length, device=device)
+
+ # task_prefix_embeds: [batch_size, padded_context_length, hidden_size]
+ # task_prefix_attention_mask: [batch_size, context_length]
+ if inputs_embeds is None:
+ return image_features, image_attention_mask
+
+ task_prefix_embeds = inputs_embeds
+ task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)
+
+ if len(task_prefix_attention_mask.shape) == 3:
+ task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
+
+ # concat [image embeds, task prefix embeds]
+ inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
+ attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)
+
+ return inputs_embeds, attention_mask
+
+
+ @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Florence2Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ pixel_values: torch.FloatTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Florence2Seq2SeqLMOutput]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration
+
+ >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large")
+ >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
+
+ >>> prompt = ""
+ >>> url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(text=prompt, images=image, return_tensors="pt")
+
+ >>> # Generate
+ >>> generate_ids = model.generate(**inputs, max_length=100)
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "A green car parked in front of a yellow building."
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ image_features = None
+ if inputs_embeds is None:
+ # 1. Extra the input embeddings
+ if input_ids is not None:
+ inputs_embeds = self.get_input_embeddings()(input_ids)
+ # 2. Merge text and images
+ if pixel_values is not None:
+ # (batch_size, num_image_tokens, hidden_size)
+ image_features = self._encode_image(pixel_values)
+ inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
+
+ if inputs_embeds is not None:
+ attention_mask = attention_mask.to(inputs_embeds.dtype)
+
+ outputs = self.language_model(
+ attention_mask=attention_mask,
+ labels=labels,
+ inputs_embeds=inputs_embeds,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ #logits = outputs.logits
+ #logits = logits.float()
+ #loss = outputs.loss
+ #if not return_dict:
+ # output = (logits,) + outputs[1:]
+ # return (loss,) + output if loss is not None else output
+
+ return Florence2Seq2SeqLMOutput(
+ #loss=loss,
+ #logits=logits,
+ #past_key_values=outputs.past_key_values,
+ #decoder_hidden_states=outputs.decoder_hidden_states,
+ #decoder_attentions=outputs.decoder_attentions,
+ #cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ image_hidden_states=image_features
+ )
+
+ def generate(
+ self,
+ input_ids,
+ inputs_embeds=None,
+ pixel_values=None,
+ **kwargs
+ ):
+
+ if inputs_embeds is None:
+ # 1. Extra the input embeddings
+ if input_ids is not None:
+ inputs_embeds = self.get_input_embeddings()(input_ids)
+ # 2. Merge text and images
+ if pixel_values is not None:
+ image_features = self._encode_image(pixel_values)
+ inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
+
+ return self.language_model.generate(
+ input_ids=None,
+ inputs_embeds=inputs_embeds,
+ **kwargs
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ pixel_values=None,
+ decoder_attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if decoder_input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
+
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "pixel_values": pixel_values,
+ "decoder_attention_mask": decoder_attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
+ return self.language_model.shift_tokens_right(labels)
+
+ def _reorder_cache(self, *args, **kwargs):
+ return self.language_model._reorder_cache(*args, **kwargs)
+
+
+@add_start_docstrings(
+ """The FLORENCE2 model which consists of a vision backbone and a language model (encoder-only).""",
+ FLORENCE2_START_DOCSTRING,
+)
+class Florence2VisionLanguageModel(Florence2PreTrainedModel):
+ def __init__(self, config: Florence2Config):
+ super().__init__(config)
+
+ assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
+ self.vision_tower = DaViT.from_config(config=config.vision_config)
+ # remove unused layers
+ del self.vision_tower.head
+ del self.vision_tower.norms
+
+ self.vocab_size = config.vocab_size
+ self._attn_implementation = config._attn_implementation
+ self._build_image_projection_layers(config)
+
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
+ self.language_model = Florence2Encoder(config.text_config)
+
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
+ self.post_init()
+
+ def _build_image_projection_layers(self, config):
+ image_dim_out = config.vision_config.dim_embed[-1]
+ dim_projection = config.vision_config.projection_dim
+ self.image_projection = nn.Parameter(
+ torch.empty(image_dim_out, dim_projection)
+ )
+ self.image_proj_norm = nn.LayerNorm(dim_projection)
+ image_pos_embed_config = config.vision_config.image_pos_embed
+ if image_pos_embed_config['type'] == 'learned_abs_2d':
+ self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
+ embedding_dim=image_dim_out,
+ num_pos=image_pos_embed_config['max_pos_embeddings']
+ )
+ else:
+ raise NotImplementedError('Not implemented yet')
+
+ self.image_feature_source = config.vision_config.image_feature_source
+
+ # temporal embedding
+ visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
+ if visual_temporal_embedding_config['type'] == 'COSINE':
+ self.visual_temporal_embed = PositionalEmbeddingCosine1D(
+ embed_dim=image_dim_out,
+ max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
+ )
+ else:
+ raise NotImplementedError('Not implemented yet')
+
+ def get_encoder(self):
+ return self.language_model
+
+ def get_input_embeddings(self):
+ return self.language_model.embed_tokens
+
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ # update vocab size
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
+ self.config.vocab_size = model_embeds.num_embeddings
+ self.vocab_size = model_embeds.num_embeddings
+ return model_embeds
+
+ def _encode_image(self, pixel_values):
+ if len(pixel_values.shape) == 4:
+ batch_size, C, H, W = pixel_values.shape
+ T = 1
+ x = self.vision_tower.forward_features_unpool(pixel_values)
+ else:
+ raise ValueError(f'invalid image shape {pixel_values.shape}')
+
+ if self.image_pos_embed is not None:
+ x = x.view(batch_size * T, -1, x.shape[-1])
+ num_tokens = x.shape[-2]
+ h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
+ assert h * w == num_tokens, 'only support square feature maps for now'
+ x = x.view(batch_size * T, h, w, x.shape[-1])
+ pos_embed = self.image_pos_embed(x)
+ x = x + pos_embed
+ x = x.view(batch_size, T * h*w, x.shape[-1])
+
+ if self.visual_temporal_embed is not None:
+ visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
+ x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])
+
+ x_feat_dict = {}
+
+ spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
+ x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x
+
+ temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
+ x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x
+
+ x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
+ x_feat_dict['last_frame'] = x
+
+ new_x = []
+ for _image_feature_source in self.image_feature_source:
+ if _image_feature_source not in x_feat_dict:
+ raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
+ new_x.append(x_feat_dict[_image_feature_source])
+
+ x = torch.cat(new_x, dim=1)
+
+ x = x @ self.image_projection
+ x = self.image_proj_norm(x)
+
+ return x
+
+ def _merge_input_ids_with_image_features(
+ self, image_features, inputs_embeds
+ ):
+ batch_size, image_token_length = image_features.size()[:-1]
+ device = image_features.device
+ image_attention_mask = torch.ones(batch_size, image_token_length, device=device)
+
+ # task_prefix_embeds: [batch_size, padded_context_length, hidden_size]
+ # task_prefix_attention_mask: [batch_size, context_length]
+ if inputs_embeds is None:
+ return image_features, image_attention_mask
+
+ task_prefix_embeds = inputs_embeds
+ task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)
+
+ if len(task_prefix_attention_mask.shape) == 3:
+ task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
+
+ # concat [image embeds, task prefix embeds]
+ inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
+ attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)
+
+ return inputs_embeds, attention_mask
+
+
+ @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Florence2VisionLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ pixel_values: torch.FloatTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ #decoder_input_ids: Optional[torch.LongTensor] = None,
+ #decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ #decoder_head_mask: Optional[torch.Tensor] = None,
+ #cross_attn_head_mask: Optional[torch.Tensor] = None,
+ #encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ #past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ #decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ #use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Florence2VisionLMOutput]:
+ r"""
+ Args:
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ Returns:
+ Example:
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration
+ >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large")
+ >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
+ >>> prompt = ""
+ >>> url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+ >>> inputs = processor(text=prompt, images=image, return_tensors="pt")
+ >>> # Generate
+ >>> generate_ids = model.generate(**inputs, max_length=100)
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+ "A green car parked in front of a yellow building."
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ image_features = None
+ if inputs_embeds is None:
+ # 1. Extra the input embeddings
+ if input_ids is not None:
+ inputs_embeds = self.get_input_embeddings()(input_ids)
+ # 2. Merge text and images
+ if pixel_values is not None:
+ # (batch_size, num_image_tokens, hidden_size)
+ image_features = self._encode_image(pixel_values)
+ inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
+
+ if inputs_embeds is not None:
+ attention_mask = attention_mask.to(inputs_embeds.dtype)
+ outputs = self.language_model(
+ #input_ids=input_ids,
+ attention_mask=attention_mask,
+ #labels=labels,
+ inputs_embeds=inputs_embeds,
+ #decoder_input_ids=decoder_input_ids,
+ #encoder_outputs=encoder_outputs,
+ #decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ #decoder_head_mask=decoder_head_mask,
+ #cross_attn_head_mask=cross_attn_head_mask,
+ #past_key_values=past_key_values,
+ #decoder_inputs_embeds=decoder_inputs_embeds,
+ #use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return outputs.last_hidden_state
+
+ return Florence2VisionLMOutput(
+ encoder_last_hidden_state=outputs.last_hidden_state,
+ encoder_hidden_states=outputs.hidden_states,
+ encoder_attentions=outputs.attentions,
+ image_hidden_states=image_features
+ )
+
+ #def _reorder_cache(self, *args, **kwargs):
# return self.language_model._reorder_cache(*args, **kwargs)
\ No newline at end of file