Spaces:
Sleeping
Sleeping
ahmed-masry
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import spaces
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
7 |
+
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
8 |
+
from colpali_engine.utils.colpali_processing_utils import (
|
9 |
+
process_images,
|
10 |
+
process_queries,
|
11 |
+
)
|
12 |
+
from pdf2image import convert_from_path
|
13 |
+
from PIL import Image
|
14 |
+
from torch.utils.data import DataLoader
|
15 |
+
from tqdm import tqdm
|
16 |
+
from transformers import AutoProcessor
|
17 |
+
|
18 |
+
# Load model
|
19 |
+
model_name = "vidore/colpali-v1.2"
|
20 |
+
token = os.environ.get("HF_TOKEN")
|
21 |
+
model = ColPali.from_pretrained(
|
22 |
+
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
|
23 |
+
|
24 |
+
model.load_adapter(model_name)
|
25 |
+
model = model.eval()
|
26 |
+
processor = AutoProcessor.from_pretrained(model_name, token = token)
|
27 |
+
|
28 |
+
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
29 |
+
|
30 |
+
|
31 |
+
@spaces.GPU
|
32 |
+
def search(query: str, ds, images, k):
|
33 |
+
|
34 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
35 |
+
if device != model.device:
|
36 |
+
model.to(device)
|
37 |
+
|
38 |
+
qs = []
|
39 |
+
with torch.no_grad():
|
40 |
+
batch_query = process_queries(processor, [query], mock_image)
|
41 |
+
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
42 |
+
embeddings_query = model(**batch_query)
|
43 |
+
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
44 |
+
|
45 |
+
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
46 |
+
scores = retriever_evaluator.evaluate(qs, ds)
|
47 |
+
|
48 |
+
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
|
49 |
+
|
50 |
+
results = []
|
51 |
+
for idx in top_k_indices:
|
52 |
+
results.append((images[idx], f"Page {idx}"))
|
53 |
+
|
54 |
+
return results
|
55 |
+
|
56 |
+
|
57 |
+
def index(files, ds):
|
58 |
+
print("Converting files")
|
59 |
+
images = convert_files(files)
|
60 |
+
print(f"Files converted with {len(images)} images.")
|
61 |
+
return index_gpu(images, ds)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
def convert_files(files):
|
66 |
+
images = []
|
67 |
+
for f in files:
|
68 |
+
images.extend(convert_from_path(f, thread_count=4))
|
69 |
+
|
70 |
+
if len(images) >= 150:
|
71 |
+
raise gr.Error("The number of images in the dataset should be less than 150.")
|
72 |
+
return images
|
73 |
+
|
74 |
+
|
75 |
+
@spaces.GPU
|
76 |
+
def index_gpu(images, ds):
|
77 |
+
"""Example script to run inference with ColPali"""
|
78 |
+
|
79 |
+
# run inference - docs
|
80 |
+
dataloader = DataLoader(
|
81 |
+
images,
|
82 |
+
batch_size=4,
|
83 |
+
shuffle=False,
|
84 |
+
collate_fn=lambda x: process_images(processor, x),
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
89 |
+
if device != model.device:
|
90 |
+
model.to(device)
|
91 |
+
|
92 |
+
|
93 |
+
for batch_doc in tqdm(dataloader):
|
94 |
+
with torch.no_grad():
|
95 |
+
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
96 |
+
embeddings_doc = model(**batch_doc)
|
97 |
+
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
98 |
+
return f"Uploaded and converted {len(images)} pages", ds, images
|
99 |
+
|
100 |
+
|
101 |
+
def get_example():
|
102 |
+
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
|
103 |
+
|
104 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
105 |
+
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
|
106 |
+
gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark).
|
107 |
+
|
108 |
+
ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).
|
109 |
+
|
110 |
+
This demo allows you to upload PDF files and search for the most relevant pages based on your query.
|
111 |
+
Refresh the page if you change documents !
|
112 |
+
|
113 |
+
⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages.
|
114 |
+
Other models will be released with better robustness towards different languages and document formats !
|
115 |
+
""")
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column(scale=2):
|
118 |
+
gr.Markdown("## 1️⃣ Upload PDFs")
|
119 |
+
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
|
120 |
+
|
121 |
+
convert_button = gr.Button("🔄 Index documents")
|
122 |
+
message = gr.Textbox("Files not yet uploaded", label="Status")
|
123 |
+
embeds = gr.State(value=[])
|
124 |
+
imgs = gr.State(value=[])
|
125 |
+
|
126 |
+
with gr.Column(scale=3):
|
127 |
+
gr.Markdown("## 2️⃣ Search")
|
128 |
+
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
129 |
+
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
130 |
+
|
131 |
+
# with gr.Row():
|
132 |
+
# gr.Examples(
|
133 |
+
# examples=get_example(),
|
134 |
+
# inputs=[file, query],
|
135 |
+
# )
|
136 |
+
|
137 |
+
# Define the actions
|
138 |
+
search_button = gr.Button("🔍 Search", variant="primary")
|
139 |
+
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
140 |
+
|
141 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
142 |
+
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
demo.queue(max_size=10).launch(debug=True)
|